COMMUNICATION

Non-contact optical characterization of negative pressure in hydrogel voids and microchannels

  • Shihao Xu 1 ,
  • Xiaowei Liu 1 ,
  • Zehua Yu 1 ,
  • Kang Liu , 1,2
Expand
  • 1. MOE Key Laboratory of Hydrodynamic Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
  • 2. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China

Received date: 27 Oct 2021

Accepted date: 24 Nov 2021

Published date: 15 Mar 2022

Copyright

2022 The Author(s) 2022

Abstract

Negative pressure in water under tension, as a thermodynamic non-equilibrium state, has facilitated the emergence of innovative technologies on microfluidics, desalination, and thermal management. However, the lack of a simple and accurate method to measure negative pressure hinders further in-depth understanding of the properties of water in such a state. In this work, we propose a non-contact optical method to quantify the negative pressure in micron-sized water voids of a hydrogel film based on the microscale mechanical deformation of the hydrogel itself. We tested three groups of hydrogel samples with different negative pressure inside, and the obtained results fit well with the theoretical prediction. Furthermore, we demonstrated that this method can characterize the distribution of negative pressure, and can thus provide the possibility of investigation of the flow behavior of water in negative pressure. These results prove this technique to be a promising approach to characterization of water under tension and for investigation of its properties under negative pressure.

Cite this article

Shihao Xu , Xiaowei Liu , Zehua Yu , Kang Liu . Non-contact optical characterization of negative pressure in hydrogel voids and microchannels[J]. Frontiers of Optoelectronics, 2022 , 15(1) : 10 . DOI: 10.1007/s12200-022-00016-5

1
Azouzi, M.E.M., Ramboz, C., Lenain, J.F., Caupin, F.: A coherent picture of water at extreme negative pressure. Nat. Phys. 9(1), 38–41 (2013)

DOI

2
Dixon, H.H., Joly, J.: On the ascent of sap. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 186, 563–576 (1895)

DOI

3
Scholander, P.F., Bradstreet, E.D., Hemmingsen, E.A., Hammel, H.T.: Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science 148(3668), 339–346 (1965)

DOI

4
Pockman, W.T., Sperry, J.S., O’Leary, J.W.: Sustained and significant negative water pressure in xylem. Nature 378(6558), 715–716 (1995)

DOI

5
Stroock, A.D., Pagay, V.V., Zwieniecki, M.A., Michele, H.N.: The physicochemical hydrodynamics of vascular plants. Annu. Rev. Fluid Mech. 46(1), 615–642 (2014)

DOI

6
Wheeler, T.D., Stroock, A.D.: The transpiration of water at negative pressures in a synthetic tree. Nature 455(7210), 208–212 (2008)

DOI

7
Wang, Y., Lee, J., Werber, J.R., Elimelech, M.: Capillary-driven desalination in a synthetic mangrove. Sci. Adv. 6(8), eaax5253 (2020)

DOI

8
Xiao, R., Maroo, S.C., Wang, E.N.: Negative pressures in nanoporous membranes for thin film evaporation. Appl. Phys. Lett. 102(12), 123103 (2013)

DOI

9
Hanks, D.F., Lu, Z., Sircar, J., Salamon, T.R., Antao, D.S., Bagnall, K.R., Barabadi, B., Wang, E.N.: Nanoporous membrane device for ultra high heat flux thermal management. Microsyst. Nanoeng. 4(1), 1 (2018)

DOI

10
Lidon, P., Marker, S.C., Wilson, J.J., Williams, R.M., Zipfel, W.R., Stroock, A.D.: Enhanced oxygen solubility in metastable water under tension. Langmuir 34(40), 12017–12024 (2018)

DOI

11
Sparreboom, W., van den Berg, A., Eijkel, J.C.: Principles and applications of nanofluidic transport. Nat. Nanotechnol. 4(11), 713–720 (2009)

DOI

12
Borno, R.T., Steinmeyer, J.D., Maharbiz, M.M.: Charge-pumping in a synthetic leaf for harvesting energy from evaporation-driven flows. Appl. Phys. Lett. 95(1), 939 (2009)

DOI

13
Vincent, O., Szenicer, A., Stroock, A.D.: Capillarity-driven flows at the continuum limit. Soft Matter 12(31), 6656–6661 (2016)

DOI

14
Nazari, M., Masoudi, A., Jafari, P., Irajizad, P., Kashyap, V., Ghasemi, H.: Ultrahigh evaporative heat fluxes in nanoconfined geometries. Langmuir 35(1), 78–85 (2019)

DOI

15
Liu, Y., Liu, X., Duan, B., Yu, Z., Cheng, T., Yu, L., Liu, L., Liu, K.: Polymer–water interaction enabled intelligent moisture regulation in hydrogels. J. Phys. Chem. Lett. 12(10), 2587–2592 (2021)

DOI

16
Zheng, Q., Durben, D.J., Wolf, G.H., Angell, C.A.: Liquids at large negative pressures: water at the homogeneous nucleation limit. Science 254(5033), 829–832 (1991)

DOI

17
Zheng, Q., Green, J., Kieffer, J., Poole, P.H., Shao, J., Wolf, G.H., Angell, C.A.: Limiting tensions for liquids and glasses from laboratory and MD studies. In: Liquids Under Negative Pressure. Dordrecht: Springer, 33–46 (2002)

DOI

18
Shmulovich, K.I., Mercury, L., Thiéry, R., Ramboz, C., El Mekki, M.: Experimental superheating of water and aqueous solutions. Geochim. Cosmochim. Acta 73(9), 2457–2470 (2009)

DOI

19
Caupin, F., Stroock, A.D.: The stability limit and other open questions on water at negative pressure. Adv. Chem. Phys. 152, 51–80 (2013)

DOI

20
Herbert, E., Balibar, S., Caupin, F.: Cavitation pressure in water. Phys. Rev. E 74(4), 041603 (2006)

DOI

21
Pagay, V., Santiago, M., Sessoms, D.A., Huber, E.J., Vincent, O., Pharkya, A., Corso, T.N., Lakso, A.N., Stroock, A.D.: A microtensiometer capable of measuring water potentials below ?10 MPa. Lab Chip 14(15), 2806–2817 (2014)

DOI

22
Pallares, G., El Mekki, A.M., González, M.A., Aragones, J.L., Abascal, J.L., Valeriani, C., Caupin, F.: Anomalies in bulk supercooled water at negative pressure. Proc. Natl. Acad. Sci. U.S.A. 111(22), 7936–7941 (2014)

DOI

23
Wheeler, T.D., Stroock, A.D.: Stability limit of liquid water in metastable equilibrium with subsaturated vapors. Langmuir 25(13), 7609–7622 (2009)

DOI

24
Dogru, S., Aksoy, B., Bayraktar, H., Alaca, B.E.: Poisson’s ratio of PDMS thin films. Polym. Test. 69, 375–384 (2018)

DOI

25
Altabet, Y.E., Singh, R.S., Stillinger, F.H., Debenedetti, P.G.: Thermodynamic anomalies in stretched water. Langmuir 33(42), 11771–11778 (2017)

DOI

26
Liu, X., Wei, W., Wu, M., Liu, K., Li, S.: Understanding the structure and dynamical properties of stretched water by molecular dynamics simulation. Mol. Phys. 117(23–24), 3852–3859 (2019)

DOI

27
Wu, M., Wei, W., Liu, X., Liu, K., Li, S.: Structure and dynamic properties of stretched water in graphene nanochannels by molecular dynamics simulation: effects of stretching extent. Phys. Chem. Chem. Phys. 21(35), 19163–19171 (2019)

DOI

Outlines

/