Non-contact optical characterization of negative pressure in hydrogel voids and microchannels
Received date: 27 Oct 2021
Accepted date: 24 Nov 2021
Published date: 15 Mar 2022
Copyright
Negative pressure in water under tension, as a thermodynamic non-equilibrium state, has facilitated the emergence of innovative technologies on microfluidics, desalination, and thermal management. However, the lack of a simple and accurate method to measure negative pressure hinders further in-depth understanding of the properties of water in such a state. In this work, we propose a non-contact optical method to quantify the negative pressure in micron-sized water voids of a hydrogel film based on the microscale mechanical deformation of the hydrogel itself. We tested three groups of hydrogel samples with different negative pressure inside, and the obtained results fit well with the theoretical prediction. Furthermore, we demonstrated that this method can characterize the distribution of negative pressure, and can thus provide the possibility of investigation of the flow behavior of water in negative pressure. These results prove this technique to be a promising approach to characterization of water under tension and for investigation of its properties under negative pressure.
Key words: Hydrogel; Negative pressure; Non-contact; Optical
Shihao Xu , Xiaowei Liu , Zehua Yu , Kang Liu . Non-contact optical characterization of negative pressure in hydrogel voids and microchannels[J]. Frontiers of Optoelectronics, 2022 , 15(1) : 10 . DOI: 10.1007/s12200-022-00016-5
1 |
Azouzi, M.E.M., Ramboz, C., Lenain, J.F., Caupin, F.: A coherent picture of water at extreme negative pressure. Nat. Phys. 9(1), 38–41 (2013)
|
2 |
Dixon, H.H., Joly, J.: On the ascent of sap. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 186, 563–576 (1895)
|
3 |
Scholander, P.F., Bradstreet, E.D., Hemmingsen, E.A., Hammel, H.T.: Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science 148(3668), 339–346 (1965)
|
4 |
Pockman, W.T., Sperry, J.S., O’Leary, J.W.: Sustained and significant negative water pressure in xylem. Nature 378(6558), 715–716 (1995)
|
5 |
Stroock, A.D., Pagay, V.V., Zwieniecki, M.A., Michele, H.N.: The physicochemical hydrodynamics of vascular plants. Annu. Rev. Fluid Mech. 46(1), 615–642 (2014)
|
6 |
Wheeler, T.D., Stroock, A.D.: The transpiration of water at negative pressures in a synthetic tree. Nature 455(7210), 208–212 (2008)
|
7 |
Wang, Y., Lee, J., Werber, J.R., Elimelech, M.: Capillary-driven desalination in a synthetic mangrove. Sci. Adv. 6(8), eaax5253 (2020)
|
8 |
Xiao, R., Maroo, S.C., Wang, E.N.: Negative pressures in nanoporous membranes for thin film evaporation. Appl. Phys. Lett. 102(12), 123103 (2013)
|
9 |
Hanks, D.F., Lu, Z., Sircar, J., Salamon, T.R., Antao, D.S., Bagnall, K.R., Barabadi, B., Wang, E.N.: Nanoporous membrane device for ultra high heat flux thermal management. Microsyst. Nanoeng. 4(1), 1 (2018)
|
10 |
Lidon, P., Marker, S.C., Wilson, J.J., Williams, R.M., Zipfel, W.R., Stroock, A.D.: Enhanced oxygen solubility in metastable water under tension. Langmuir 34(40), 12017–12024 (2018)
|
11 |
Sparreboom, W., van den Berg, A., Eijkel, J.C.: Principles and applications of nanofluidic transport. Nat. Nanotechnol. 4(11), 713–720 (2009)
|
12 |
Borno, R.T., Steinmeyer, J.D., Maharbiz, M.M.: Charge-pumping in a synthetic leaf for harvesting energy from evaporation-driven flows. Appl. Phys. Lett. 95(1), 939 (2009)
|
13 |
Vincent, O., Szenicer, A., Stroock, A.D.: Capillarity-driven flows at the continuum limit. Soft Matter 12(31), 6656–6661 (2016)
|
14 |
Nazari, M., Masoudi, A., Jafari, P., Irajizad, P., Kashyap, V., Ghasemi, H.: Ultrahigh evaporative heat fluxes in nanoconfined geometries. Langmuir 35(1), 78–85 (2019)
|
15 |
Liu, Y., Liu, X., Duan, B., Yu, Z., Cheng, T., Yu, L., Liu, L., Liu, K.: Polymer–water interaction enabled intelligent moisture regulation in hydrogels. J. Phys. Chem. Lett. 12(10), 2587–2592 (2021)
|
16 |
Zheng, Q., Durben, D.J., Wolf, G.H., Angell, C.A.: Liquids at large negative pressures: water at the homogeneous nucleation limit. Science 254(5033), 829–832 (1991)
|
17 |
Zheng, Q., Green, J., Kieffer, J., Poole, P.H., Shao, J., Wolf, G.H., Angell, C.A.: Limiting tensions for liquids and glasses from laboratory and MD studies. In: Liquids Under Negative Pressure. Dordrecht: Springer, 33–46 (2002)
|
18 |
Shmulovich, K.I., Mercury, L., Thiéry, R., Ramboz, C., El Mekki, M.: Experimental superheating of water and aqueous solutions. Geochim. Cosmochim. Acta 73(9), 2457–2470 (2009)
|
19 |
Caupin, F., Stroock, A.D.: The stability limit and other open questions on water at negative pressure. Adv. Chem. Phys. 152, 51–80 (2013)
|
20 |
Herbert, E., Balibar, S., Caupin, F.: Cavitation pressure in water. Phys. Rev. E 74(4), 041603 (2006)
|
21 |
Pagay, V., Santiago, M., Sessoms, D.A., Huber, E.J., Vincent, O., Pharkya, A., Corso, T.N., Lakso, A.N., Stroock, A.D.: A microtensiometer capable of measuring water potentials below ?10 MPa. Lab Chip 14(15), 2806–2817 (2014)
|
22 |
Pallares, G., El Mekki, A.M., González, M.A., Aragones, J.L., Abascal, J.L., Valeriani, C., Caupin, F.: Anomalies in bulk supercooled water at negative pressure. Proc. Natl. Acad. Sci. U.S.A. 111(22), 7936–7941 (2014)
|
23 |
Wheeler, T.D., Stroock, A.D.: Stability limit of liquid water in metastable equilibrium with subsaturated vapors. Langmuir 25(13), 7609–7622 (2009)
|
24 |
Dogru, S., Aksoy, B., Bayraktar, H., Alaca, B.E.: Poisson’s ratio of PDMS thin films. Polym. Test. 69, 375–384 (2018)
|
25 |
Altabet, Y.E., Singh, R.S., Stillinger, F.H., Debenedetti, P.G.: Thermodynamic anomalies in stretched water. Langmuir 33(42), 11771–11778 (2017)
|
26 |
Liu, X., Wei, W., Wu, M., Liu, K., Li, S.: Understanding the structure and dynamical properties of stretched water by molecular dynamics simulation. Mol. Phys. 117(23–24), 3852–3859 (2019)
|
27 |
Wu, M., Wei, W., Liu, X., Liu, K., Li, S.: Structure and dynamic properties of stretched water in graphene nanochannels by molecular dynamics simulation: effects of stretching extent. Phys. Chem. Chem. Phys. 21(35), 19163–19171 (2019)
|
/
〈 | 〉 |