Non-contact optical characterization of negative pressure in hydrogel voids and microchannels
Shihao Xu, Xiaowei Liu, Zehua Yu, Kang Liu
Non-contact optical characterization of negative pressure in hydrogel voids and microchannels
Negative pressure in water under tension, as a thermodynamic non-equilibrium state, has facilitated the emergence of innovative technologies on microfluidics, desalination, and thermal management. However, the lack of a simple and accurate method to measure negative pressure hinders further in-depth understanding of the properties of water in such a state. In this work, we propose a non-contact optical method to quantify the negative pressure in micron-sized water voids of a hydrogel film based on the microscale mechanical deformation of the hydrogel itself. We tested three groups of hydrogel samples with different negative pressure inside, and the obtained results fit well with the theoretical prediction. Furthermore, we demonstrated that this method can characterize the distribution of negative pressure, and can thus provide the possibility of investigation of the flow behavior of water in negative pressure. These results prove this technique to be a promising approach to characterization of water under tension and for investigation of its properties under negative pressure.
Hydrogel / Negative pressure / Non-contact / Optical
[1] |
Azouzi, M.E.M., Ramboz, C., Lenain, J.F., Caupin, F.: A coherent picture of water at extreme negative pressure. Nat. Phys. 9(1), 38–41 (2013)
CrossRef
Google scholar
|
[2] |
Dixon, H.H., Joly, J.: On the ascent of sap. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 186, 563–576 (1895)
CrossRef
Google scholar
|
[3] |
Scholander, P.F., Bradstreet, E.D., Hemmingsen, E.A., Hammel, H.T.: Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science 148(3668), 339–346 (1965)
CrossRef
Google scholar
|
[4] |
Pockman, W.T., Sperry, J.S., O’Leary, J.W.: Sustained and significant negative water pressure in xylem. Nature 378(6558), 715–716 (1995)
CrossRef
Google scholar
|
[5] |
Stroock, A.D., Pagay, V.V., Zwieniecki, M.A., Michele, H.N.: The physicochemical hydrodynamics of vascular plants. Annu. Rev. Fluid Mech. 46(1), 615–642 (2014)
CrossRef
Google scholar
|
[6] |
Wheeler, T.D., Stroock, A.D.: The transpiration of water at negative pressures in a synthetic tree. Nature 455(7210), 208–212 (2008)
CrossRef
Google scholar
|
[7] |
Wang, Y., Lee, J., Werber, J.R., Elimelech, M.: Capillary-driven desalination in a synthetic mangrove. Sci. Adv. 6(8), eaax5253 (2020)
CrossRef
Google scholar
|
[8] |
Xiao, R., Maroo, S.C., Wang, E.N.: Negative pressures in nanoporous membranes for thin film evaporation. Appl. Phys. Lett. 102(12), 123103 (2013)
CrossRef
Google scholar
|
[9] |
Hanks, D.F., Lu, Z., Sircar, J., Salamon, T.R., Antao, D.S., Bagnall, K.R., Barabadi, B., Wang, E.N.: Nanoporous membrane device for ultra high heat flux thermal management. Microsyst. Nanoeng. 4(1), 1 (2018)
CrossRef
Google scholar
|
[10] |
Lidon, P., Marker, S.C., Wilson, J.J., Williams, R.M., Zipfel, W.R., Stroock, A.D.: Enhanced oxygen solubility in metastable water under tension. Langmuir 34(40), 12017–12024 (2018)
CrossRef
Google scholar
|
[11] |
Sparreboom, W., van den Berg, A., Eijkel, J.C.: Principles and applications of nanofluidic transport. Nat. Nanotechnol. 4(11), 713–720 (2009)
CrossRef
Google scholar
|
[12] |
Borno, R.T., Steinmeyer, J.D., Maharbiz, M.M.: Charge-pumping in a synthetic leaf for harvesting energy from evaporation-driven flows. Appl. Phys. Lett. 95(1), 939 (2009)
CrossRef
Google scholar
|
[13] |
Vincent, O., Szenicer, A., Stroock, A.D.: Capillarity-driven flows at the continuum limit. Soft Matter 12(31), 6656–6661 (2016)
CrossRef
Google scholar
|
[14] |
Nazari, M., Masoudi, A., Jafari, P., Irajizad, P., Kashyap, V., Ghasemi, H.: Ultrahigh evaporative heat fluxes in nanoconfined geometries. Langmuir 35(1), 78–85 (2019)
CrossRef
Google scholar
|
[15] |
Liu, Y., Liu, X., Duan, B., Yu, Z., Cheng, T., Yu, L., Liu, L., Liu, K.: Polymer–water interaction enabled intelligent moisture regulation in hydrogels. J. Phys. Chem. Lett. 12(10), 2587–2592 (2021)
CrossRef
Google scholar
|
[16] |
Zheng, Q., Durben, D.J., Wolf, G.H., Angell, C.A.: Liquids at large negative pressures: water at the homogeneous nucleation limit. Science 254(5033), 829–832 (1991)
CrossRef
Google scholar
|
[17] |
Zheng, Q., Green, J., Kieffer, J., Poole, P.H., Shao, J., Wolf, G.H., Angell, C.A.: Limiting tensions for liquids and glasses from laboratory and MD studies. In: Liquids Under Negative Pressure. Dordrecht: Springer, 33–46 (2002)
CrossRef
Google scholar
|
[18] |
Shmulovich, K.I., Mercury, L., Thiéry, R., Ramboz, C., El Mekki, M.: Experimental superheating of water and aqueous solutions. Geochim. Cosmochim. Acta 73(9), 2457–2470 (2009)
CrossRef
Google scholar
|
[19] |
Caupin, F., Stroock, A.D.: The stability limit and other open questions on water at negative pressure. Adv. Chem. Phys. 152, 51–80 (2013)
CrossRef
Google scholar
|
[20] |
Herbert, E., Balibar, S., Caupin, F.: Cavitation pressure in water. Phys. Rev. E 74(4), 041603 (2006)
CrossRef
Google scholar
|
[21] |
Pagay, V., Santiago, M., Sessoms, D.A., Huber, E.J., Vincent, O., Pharkya, A., Corso, T.N., Lakso, A.N., Stroock, A.D.: A microtensiometer capable of measuring water potentials below ?10 MPa. Lab Chip 14(15), 2806–2817 (2014)
CrossRef
Google scholar
|
[22] |
Pallares, G., El Mekki, A.M., González, M.A., Aragones, J.L., Abascal, J.L., Valeriani, C., Caupin, F.: Anomalies in bulk supercooled water at negative pressure. Proc. Natl. Acad. Sci. U.S.A. 111(22), 7936–7941 (2014)
CrossRef
Google scholar
|
[23] |
Wheeler, T.D., Stroock, A.D.: Stability limit of liquid water in metastable equilibrium with subsaturated vapors. Langmuir 25(13), 7609–7622 (2009)
CrossRef
Google scholar
|
[24] |
Dogru, S., Aksoy, B., Bayraktar, H., Alaca, B.E.: Poisson’s ratio of PDMS thin films. Polym. Test. 69, 375–384 (2018)
CrossRef
Google scholar
|
[25] |
Altabet, Y.E., Singh, R.S., Stillinger, F.H., Debenedetti, P.G.: Thermodynamic anomalies in stretched water. Langmuir 33(42), 11771–11778 (2017)
CrossRef
Google scholar
|
[26] |
Liu, X., Wei, W., Wu, M., Liu, K., Li, S.: Understanding the structure and dynamical properties of stretched water by molecular dynamics simulation. Mol. Phys. 117(23–24), 3852–3859 (2019)
CrossRef
Google scholar
|
[27] |
Wu, M., Wei, W., Liu, X., Liu, K., Li, S.: Structure and dynamic properties of stretched water in graphene nanochannels by molecular dynamics simulation: effects of stretching extent. Phys. Chem. Chem. Phys. 21(35), 19163–19171 (2019)
CrossRef
Google scholar
|
/
〈 | 〉 |