1 Introduction
2 STEs in 0D inorganic Cu(I)MH materials
Fig.1 (a) Crystal structure of Cs3Cu2I5 (top), and Cs3Cu2Cl5 (middle). Two adjacent copper halide polyhedra (bottom) of Cs3Cu2I5 (left) and Cs3Cu2Br5 (right) along one of the crystal directions [25]. (b) X-ray diffraction (XRD) (left) and unit cell volumes (right) of different Cs3Cu2X5 (X= Cl, Br, I) compounds [18]. (c) PLE (left) and PL (right) spectra of different Cs3Cu2X5 [18]. (d) Images of the powders of different Cs3Cu2X5 (X= Cl, Br, I) compounds under ultraviolet irradiation [15,26]. (e) Integrated PL intensity vs. excitation power for Cs3Cu2Cl5 [26]. (f) Integrated PL intensity vs. excitation power for Cs3Cu2Br5−nIn(n = 0, 1.25, 2.50, 3.75) [15]. (g) Integrated PL intensity vs. excitation power for Cs3Cu2I5 [27] |
Tab.1 PLE, PL, lifetime (t), PLQY, bandgap (Eg), FWHM, and Stokes shift (DS) of Cs3Cu2X5 (X= Cl, Br, I) reported in the literature |
material | PLE /nm | PL/nm | t/µs | PLQY /% | Eg /eV | FWHM /nm | DS/nm | Ref. |
---|---|---|---|---|---|---|---|---|
Cs3Cu2Cl5 | 259 | 527 | 135.97 | 48.7 | 4.43 | − | 242 | [17] |
Cs3Cu2Cl5 | ~283 | 516 | − | 78 | − | − | ~235 | [18] |
Cs3Cu2Cl5 | 310 | 525 | − | 60 | − | 102 | 215 | [25] |
Cs3Cu2Cl5 | 320 | 515 | 112.4 | 91.3 | 3.60 | 91 | 195 | [26] |
Cs3Cu2(Cl0.75Br0.25)5 | ~275 | 516 | − | 10 | − | − | ~185 | [18] |
Cs3Cu2(Cl0.5Br0.5)5 | ~272 | 470 | − | 3.6 | − | − | ~195 | [18] |
Cs3Cu2(Cl0.25Br0.75)5 | ~273 | 464 | − | 3.3 | − | − | ~190 | [18] |
Cs3Cu2Br5 | 298 | 455 | − | 50.1 | 4.51 | 75 | 157 | [15] |
Cs3Cu2Br5 | 269 | 461 | 14.12 | 16.9 | 4.33 | − | − | [17] |
Cs3Cu2Br5 | 293 | 460 | − | 10 | − | 73 | 167 | [25] |
Cs3Cu2Br5 | 290 | 461 | − | 17.3 | 3.72 | 82 | 171 | [26] |
Cs3Cu2Br3.75I1.25 | 293 | 456 | − | 53.8 | − | 85 | 164 | [15] |
Cs3Cu2Br2.5I2.5 | 294 | 453 | − | 55.2 | − | 89 | 159 | [15] |
Cs3Cu2Br1.25I3.75 | 300 | 448 | − | 60.4 | − | 93 | 148 | [15] |
Cs3Cu2l5 | 290 | 445 | − | 91.2 | − | 175 | 155 | [12] |
Cs3Cu2l5 | 309 | 443 | − | 98.7 | − | 99 | 135 | [15] |
Cs3Cu2l5 | 262, 285 | 445 | 1.56 | 29.2 | 4.40 | − | 158 | [17] |
Cs3Cu2l5 | 310 | 440 | − | 62 | − | 80 | 130 | [25] |
Cs3Cu2l5 | 305 | 445 | − | 49.2 | 4.06 | 77 | 140 | [26] |
Cs3Cu2l5 | 286 | 444 | 1.12 | − | 4.1 | 79 | − | [28] |
Cs3Cu2l5 | 316 | 437 | − | 95 | − | − | − | [29] |
3 STE in 1D inorganic Cu(I)MH materials
Fig.3 (a) Crystal structure of CsCu2I3 [31]. (b) CsCu2I3 structure viewed along the c-axis [31]. (c) Crystal structure of Rb2CuBr3 [20]. (d) Rb2CuBr3 structure viewed along the a-axis [20]. (e) Crystal structure of Cs5Cu3Cl6I2 [21]. (f) [Cu2I5]3− unit in Cs5Cu3Cl6I2 (Pnma) (left) and the [Cu2Cl5]3− unit in Cs5Cu3Cl6I2 (Cmcm) (right) [21]. (g) PL micrographs of CsCu2I3 crystal under pressures from 1 atm up to 16.0 GPa [22]. Schematic illustrations of the trapping and detrapping processes of the excitons in (h) phase I and (i) phase II. FE, free exciton state; GS, ground state; ST, self-trapped state; EST, self-trapping energy; EPL, photoluminescence energy; Ed, lattice deformation energy [22] |
Tab.2 PLE, PL, t, PLQY, Eg, FWHM, and DS of CsCu2X3 (X= Cl, Br, I), A2CuX3 (A= Rb, K; X= Br, Cl), and Cs5Cu3Cl6I2 from the literatures |
material | PLE /nm | PL/nm | t/µs | PLQY /% | Eg/eV | FWHM/nm | DS/nm | Ref. |
---|---|---|---|---|---|---|---|---|
CsCu2Cl3 | 319 | 527 | 0.0138 | 48.0 | 4.29 | 102 | 208 | [19] |
CsCu2Cl1.5Br1.5 | 340 | 587 | 0.0151 | 0.37 | − | 200 | 247 | [19] |
CsCu2Br3 | 319 | 533 | 0.018 | 18.3 | 3.94 | 106 | 214 | [19] |
CsCu2Br1.5I1.5 | 335 | 584 | 0.0266 | 0.38 | − | 128 | 249 | [19] |
CsCu2I3 | 347 | 568 | 0.0636 | 15.7 | 3.78 | 75 | 245 | [14] |
CsCu2I3 | 331 | 575 | − | 6 | − | 120 | 244 | [25] |
CsCu2I3 | 321 | 561 | 0.104 | − | 3.6 | − | − | [28] |
CsCu2I3 | 334 | 576 | 0.062 | 3.23 | 3.93 | 126 | 242 | [19] |
Rb2CuCl3 | 300 | 395 | 12.21 | 85 | 4.49 | 52 | 93 | [13] |
Rb2CuBr3 | 276 | 385 | 41.4 | 64 | 3.51 | 54 | 85 | [13] |
Rb2CuBr3 | 300 | 385 | 41.4 | 98.6 | 3.51 | 54 | 85 | [20] |
Rb2CuBr3 | 302 | 390 | − | 20 | − | 54 | 88 | [25] |
K2CuCl3 | 291 | 392 | − | 96.58 | − | 54 | 101 | [16] |
K2CuBr3 | 296 | 388 | − | 55 | − | 54 | 92 | [16] |
Cs5Cu3Cl6I2 | − | 462 | 40 | 95 | − | 95 | 191 | [21] |
Fig.4 (a) Partial charge density contours of both hole and electron wave functions for STE1 and STE2 in CsCu2Cl3 and STE3 in CsCu2I3, viewed from the two directions (along the b and a axes, respectively) perpendicular to the 1D chain [35]. (b) Femtosecond UV-vis transient absorption broadband spectra of a CsCu2I3 thin film [36]. Each curve in the figure represents the absorption curve of the CsCu2I3 film at a certain moment, and the vertical axis represents the change of absorption at a certain moment compared to the time zero. (c) Species-associated spectra were obtained from the kinetic modeling. Species: FE* and FE (hot and cooled free excitons, respectively), STE** and STE* (hot and partially cooled STEs, respectively). GS is the “ground-state” absorption (black solid line) [36]. (d) Semilogarithmic contour plots of experimental transient absorption spectra (right) and fitted transient absorption spectra (left), the latter with additional representations of the spectral evolution for each species [36]. (e) Energy level scheme summarizing the states, transitions, and central dynamic processes in CsCu2I3 thin films. Energetics of STE1, STE2, and STE3 are taken from Refs. [35,36] |
4 Applications of inorganic Cu(I)MH STE materials
Fig.5 (a) Photo of a white LED driven under a bias voltage of 6 V. The inset shows photographs of Cs3Cu2I5, a Cs3Cu2I5 + CsCu2I3 mixture, and CsCu2I3 (from top to bottom) under UV light irradiation at 305 nm [37]. (b) PL spectrum of the Cs3Cu2I5 + CsCu2I3 mixture (with weight ratio of 1:16 or molar ratio of 1:8). Inset shows a photograph of the mixture under 254 nm light irradiation [25]. (c) Schematic structure of the CsCu2I3 based LEDs [38]. (d) Voltage-current density-luminance curves of the yellow emission LEDs [38]. (e) Schematic structure of the Cs3Cu2I5 NCs based LEDs [39]. (f) Voltage-current density-luminance curves of the blue emission device [39]. (g) Schematic structure of the CsCu2I3@Cs3Cu2I5 based LEDs [40]. (h) Voltage-current density-luminance curves of the white emission device [40] |
Fig.6 (a) Schematic illustration of the Cs3Cu2I5/GaN heterojunction device [42]. (b) I‒V curves of the photodetector tested in the dark and under different light irradiation intensities (320 nm) [42]. (c) Responsivity and specific detectivity of the photodetector versus light intensity [42]. (d) Rising and falling edges for estimating the rise time (tr) and fall time (tf) of the photodetector [42]. (e) Schematic illustration of the polarization-sensitive photodetector based on 1D CsCu2I3 nanowires (NWs) [23]. (f) Anisotropic photocurrent response under 325 nm light excitation described via a 2D color map (photocurrent is denoted by the color bar, with voltage as the x-axis and polarization angle as the y-axis) [23]. (g) Photocurrent response of a 1D CsCu2I3 NW device under incident light with different polarization angles [23]. (h) and (i) Optical microscopy images of CsCu2I3 single crystals with rod-shaped morphology [44]. Comparison of photoelectric properties between (110) and (010) crystal planes of CsCu2I3 single crystals: (j) I–t curves and (k) I–V curves in dark and under 350 nm illumination at a 3 V bias [44] |
Fig.7 (a) Schematic of the prototype projection system for X-ray imaging, and photographs of an X-ray image of a universal board and a ball-point pen [47]. (b) Illustration of Cs3Cu2I5 precursor solution as a fluorescent ink [48]. (c) Schematic illustration of the setup for recording deep UV images and the image-sensing profile of HFUT under 265, 365, and 405 nm light excitation [43] |