Self-trapped exciton emission in inorganic copper(I) metal halides

Boyu ZHANG, Xian WU, Shuxing ZHOU, Guijie LIANG, Qingsong HU

PDF(6943 KB)
PDF(6943 KB)
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (4) : 459-472. DOI: 10.1007/s12200-021-1133-4
REVIEW ARTICLE
REVIEW ARTICLE

Self-trapped exciton emission in inorganic copper(I) metal halides

Author information +
History +

Abstract

The broad emission and high photoluminescence quantum yield of self-trapped exciton (STE) radiative recombination emitters make them an ideal solution for single-substrate, white, solid-state lighting sources. Unlike impurities and defects in semiconductors, the formation of STEs requires a lattice distortion, along with strong electron–phonon coupling, in low electron-dimensional materials. The photoluminescence of inorganic copper(I) metal halides with low electron-dimensionality has been found to be the result of STEs. These materials were of significant interest because of their lead-free, all-inorganic structures, and high luminous efficiencies. In this paper, we summarize the luminescence characteristics of zero- and one-dimensional inorganic copper(I) metal halides with STEs to provide an overview of future research opportunities.

Graphical abstract

Keywords

self-trapped exciton (STE) / low electron-dimensional / inorganic copper(I) metal halides

Cite this article

Download citation ▾
Boyu ZHANG, Xian WU, Shuxing ZHOU, Guijie LIANG, Qingsong HU. Self-trapped exciton emission in inorganic copper(I) metal halides. Front. Optoelectron., 2021, 14(4): 459‒472 https://doi.org/10.1007/s12200-021-1133-4

References

[1]
Guo Z, Li J, Pan R, Cheng J, Chen R, He T. All-inorganic copper(I)-based ternary metal halides: promising materials toward optoelectronics. Nanoscale, 2020, 12(29): 15560–15576
CrossRef Pubmed Google scholar
[2]
Tang J, Li D. Halide perovskites: from materials to optoelectronic devices. Frontiers of Optoelectronics, 2020, 13(3): 191–192
CrossRef Google scholar
[3]
Wang L, Chen P, Kuttipillai P S, King I, Staples R, Sun K, Lunt R R. Epitaxial stabilization of tetragonal cesium tin iodide. ACS Applied Materials & Interfaces, 2019, 11(35): 32076–32083
CrossRef Pubmed Google scholar
[4]
Chen J, Luo Z, Fu Y, Wang X, Czech K J, Shen S, Guo L, Wright J C, Pan A, Jin S. Tin(IV)-tolerant vapor-phase growth and photophysical properties of aligned cesium tin halide perovskite (CsSnX3; X= Br, I) nanowires. ACS Energy Letters, 2019, 4(5): 1045–1052
CrossRef Google scholar
[5]
Wong A B, Bekenstein Y, Kang J, Kley C S, Kim D, Gibson N A, Zhang D, Yu Y, Leone S R, Wang L W, Alivisatos A P, Yang P. Strongly quantum confined colloidal cesium tin iodide perovskite nanoplates: lessons for reducing defect density and improving stability. Nano Letters, 2018, 18(3): 2060–2066
CrossRef Pubmed Google scholar
[6]
Chen L J. Synthesis and optical properties of lead-free cesium germanium halide perovskite quantum rods. RSC Advances, 2018, 8(33): 18396–18399
CrossRef Google scholar
[7]
Leng M, Yang Y, Zeng K, Chen Z, Tan Z, Li S, Li J, Xu B, Li D, Hautzinger M P, Fu Y, Zhai T, Xu L, Niu G, Jin S, Tang J. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Advanced Functional Materials, 2018, 28(1): 1704446
CrossRef Google scholar
[8]
Luo J, Wang X, Li S, Liu J, Guo Y, Niu G, Yao L, Fu Y, Gao L, Dong Q, Zhao C, Leng M, Ma F, Liang W, Wang L, Jin S, Han J, Zhang L, Etheridge J, Wang J, Yan Y, Sargent E H, Tang J. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563(7732): 541–545
CrossRef Pubmed Google scholar
[9]
Li J, Wang H, Li D. Self-trapped excitons in two-dimensional perovskites. Frontiers of Optoelectronics, 2020, 13(3): 225–234
CrossRef Google scholar
[10]
Li S, Luo J, Liu J, Tang J. Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications. Journal of Physical Chemistry Letters, 2019, 10(8): 1999–2007
CrossRef Pubmed Google scholar
[11]
Smith M D, Karunadasa H I. White-light emission from layered halide perovskites. Accounts of Chemical Research, 2018, 51(3): 619–627
CrossRef Pubmed Google scholar
[12]
Jun T, Sim K, Iimura S, Sasase M, Kamioka H, Kim J, Hosono H. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Advanced Materials, 2018, 30(43): e1804547
CrossRef Pubmed Google scholar
[13]
Creason T D, Yangui A, Roccanova R, Strom A, Du M H, Saparov B. Rb2CuX3 (X= Cl, Br): 1D all-inorganic copper halides with ultrabright blue emission and up-conversion photoluminescence. Advanced Optical Materials, 2020, 8(2): 1901338
CrossRef Google scholar
[14]
Lin R, Guo Q, Zhu Q, Zhu Y, Zheng W, Huang F. All-inorganic CsCu2I3 single crystal with high-PLQY (≈15.7%) intrinsic white-light emission via strongly localized 1D excitonic recombination. Advanced Materials, 2019, 31(46): e1905079
CrossRef Pubmed Google scholar
[15]
Roccanova R, Yangui A, Nhalil H, Shi H, Du M H, Saparov B. Near-unity photoluminescence quantum yield in blue-emitting Cs3Cu2Br5−xIx (0≤x≤5). ACS Applied Electronic Materials, 2019, 1(3): 269–274
CrossRef Google scholar
[16]
Creason T D, McWhorter T M, Bell Z, Du M H, Saparov B. K2CuX3 (X= Cl, Br): all-inorganic lead-free blue emitters with near-unity photoluminescence quantum yield. Chemistry of Materials, 2020, 32(14): 6197–6205
CrossRef Google scholar
[17]
Luo Z, Li Q, Zhang L, Wu X, Tan L, Zou C, Liu Y, Quan Z. 0D Cs3Cu2X5 (X= I, Br, and Cl) nanocrystals: colloidal syntheses and optical properties. Small, 2020, 16(3): e1905226
CrossRef Pubmed Google scholar
[18]
Sebastia-Luna P, Navarro-Alapont J, Sessolo M, Palazon F, Bolink H J. Solvent-free synthesis and thin-film deposition of cesium copper halides with bright blue photoluminescence. Chemistry of Materials, 2019, 31(24): 10205–10210
CrossRef Google scholar
[19]
Roccanova R, Yangui A, Seo G, Creason T D, Wu Y, Kim D Y, Du M H, Saparov B. Bright luminescence from nontoxic CsCu2X3 (X= Cl, Br, I). ACS Materials Letters, 2019, 1(4): 459–465
[20]
Yang B, Yin L, Niu G, Yuan J H, Xue K H, Tan Z, Miao X S, Niu M, Du X, Song H, Lifshitz E, Tang J. Lead-free halide Rb2CuBr3 as sensitive X-ray scintillator. Advanced Materials, 2019, 31(44): e1904711
CrossRef Pubmed Google scholar
[21]
Li J, Inoshita T, Ying T, Ooishi A, Kim J, Hosono H. A highly efficient and stable blue-emitting Cs5Cu3Cl6I2 with a 1D chain structure. Advanced Materials, 2020, 32(37): e2002945
CrossRef Pubmed Google scholar
[22]
Li Q, Chen Z, Yang B, Tan L, Xu B, Han J, Zhao Y, Tang J, Quan Z. Pressure-induced remarkable enhancement of self-trapped exciton emission in one-dimensional CsCu2I3 with tetrahedral units. Journal of the American Chemical Society, 2020, 142(4): 1786–1791
CrossRef Pubmed Google scholar
[23]
Li Y, Shi Z, Wang L, Chen Y, Liang W, Wu D, Li X, Zhang Y, Shan C, Fang X. Solution-processed one-dimensional CsCu2I3 nanowires for polarization-sensitive and flexible ultraviolet photodetectors. Materials Horizons, 2020, 7(6): 1613–1622
CrossRef Google scholar
[24]
Guo Z, Li J, Gao Y, Cheng J, Zhang W, Pan R, Chen R, He T. Multiphoton absorption in low-dimensional cesium copper iodide single crystals. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2020, 8(47): 16923–16929
CrossRef Google scholar
[25]
Grandhi G K, Viswanath N S M, Cho H B, Han J H, Kim S M, Choi S, Im W B. Mechanochemistry as a green route: synthesis, thermal stability, and postsynthetic reversible phase transformation of highly-luminescent cesium copper halides. Journal of Physical Chemistry Letters, 2020, 11(18): 7723–7729
CrossRef Pubmed Google scholar
[26]
Lian L, Zheng M, Zhang P, Zheng Z, Du K, Lei W, Gao J, Niu G, Zhang D, Zhai T, Jin S, Tang J, Zhang X, Zhang J. Photophysics in Cs3Cu2X5 (X= Cl, Br, or I): highly luminescent self-trapped excitons from local structure symmetrization. Chemistry of Materials, 2020, 32(8): 3462–3468
CrossRef Google scholar
[27]
Cheng P, Sun L, Feng L, Yang S, Yang Y, Zheng D, Zhao Y, Sang Y, Zhang R, Wei D, Deng W, Han K. Colloidal synthesis and optical properties of all-inorganic low-dimensional cesium copper halide nanocrystals. Angewandte Chemie International Edition, 2019, 58(45): 16087–16091
CrossRef Pubmed Google scholar
[28]
Vashishtha P, Nutan G V, E. Griffith B, Fang Y, Giovanni D, Jagadeeswararao M, Sum T C, Mathews N, Mhaisalkar S G, Hanna J V, White T. Cesium copper iodide tailored nanoplates and nanorods for blue, yellow, and white emission. Chemistry of Materials, 2019, 31(21): 9003–9011
CrossRef Google scholar
[29]
Liu S, Yue Y, Zhang X, Wang C, Yang G, Zhu D. A controllable and reversible phase transformation between all-inorganic perovskites for white light emitting diodes. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2020, 8(25): 8374–8379
CrossRef Google scholar
[30]
Williams R T, Song K S. The self-trapped exciton. Journal of Physics and Chemistry of Solids, 1990, 51(7): 679–716
CrossRef Google scholar
[31]
Yang J, Kang W, Liu Z, Pi M, Luo L B, Li C, Lin H, Luo Z, Du J, Zhou M, Tang X. High-performance deep ultraviolet photodetector based on a one-dimensional lead-free halide perovskite CsCu2I3 film with high stability. Journal of Physical Chemistry Letters, 2020, 11(16): 6880–6886
CrossRef Pubmed Google scholar
[32]
Ma Z, Liu Z, Lu S, Wang L, Feng X, Yang D, Wang K, Xiao G, Zhang L, Redfern S A T, Zou B. Pressure-induced emission of cesium lead halide perovskite nanocrystals. Nature Communications, 2018, 9(1): 4506
CrossRef Pubmed Google scholar
[33]
Shi Y, Ma Z, Zhao D, Chen Y, Cao Y, Wang K, Xiao G, Zou B. Pressure-induced emission (PIE) of one-dimensional organic tin bromide perovskites. Journal of the American Chemical Society, 2019, 141(16): 6504–6508
CrossRef Pubmed Google scholar
[34]
Wang Y, Lü X, Yang W, Wen T, Yang L, Ren X, Wang L, Lin Z, Zhao Y. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite. Journal of the American Chemical Society, 2015, 137(34): 11144–11149
CrossRef Pubmed Google scholar
[35]
Du M H. Emission trend of multiple self-trapped excitons in luminescent 1D copper halides. ACS Energy Letters, 2020, 5(2): 464–469
CrossRef Google scholar
[36]
Kentsch R, Morgenroth M, Scholz M, Xu K, Schmedt Auf der Günne J, Lenzer T, Oum K. Direct observation of the exciton self-trapped process in CsCu2I3 thin films. Journal of Physical Chemistry Letters, 2020, 11(11): 4286–4291
CrossRef Pubmed Google scholar
[37]
Fang S, Wang Y, Li H, Fang F, Jiang K, Liu Z, Li H, Shi Y. Rapid synthesis and mechanochemical reactions of cesium copper halides for convenient chromaticity tuning and efficient white light emission. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2020, 8(14): 4895–4901
CrossRef Google scholar
[38]
Ma Z, Shi Z, Qin C, Cui M, Yang D, Wang X, Wang L, Ji X, Chen X, Sun J, Wu D, Zhang Y, Li X J, Zhang L, Shan C. Stable yellow light-emitting devices based on ternary copper halides with broadband emissive self-trapped excitons. ACS Nano, 2020, 14(4): 4475–4486
CrossRef Pubmed Google scholar
[39]
Wang L, Shi Z, Ma Z, Yang D, Zhang F, Ji X, Wang M, Chen X, Na G, Chen S, Wu D, Zhang Y, Li X, Zhang L, Shan C. Colloidal synthesis of ternary copper halide nanocrystals for high-efficiency deep-blue light-emitting diodes with a half-lifetime above 100 h. Nano Letters, 2020, 20(5): 3568–3576
CrossRef Pubmed Google scholar
[40]
Ma Z, Shi Z, Yang D, Li Y, Zhang F, Wang L, Chen X, Wu D, Tian Y, Zhang Y, Zhang L, Li X, Shan C. High color-rendering index and stable white light-emitting diodes by assembling two broadband emissive self-trapped excitons. Advanced Materials, 2021, 33(2): e2001367
CrossRef Pubmed Google scholar
[41]
Lin R, Zhu Q, Guo Q, Zhu Y, Zheng W, Huang F. Dual self-trapped exciton emission with ultrahigh photoluminescence quantum yield in CsCu2I3 and Cs3Cu2I5 perovskite single crystals. Journal of Physical Chemistry C, 2020, 124(37): 20469–20476
CrossRef Google scholar
[42]
Li Y, Shi Z, Liang W, Wang L, Li S, Zhang F, Ma Z, Wang Y, Tian Y, Wu D, Li X, Zhang Y, Shan C, Fang X. Highly stable and spectrum-selective ultraviolet photodetectors based on lead-free copper-based perovskites. Materials Horizons, 2020, 7(2): 530–540
CrossRef Google scholar
[43]
Zhang Z X, Li C, Lu Y, Tong X W, Liang F X, Zhao X Y, Wu D, Xie C, Luo L B. Sensitive deep ultraviolet photodetector and image sensor composed of inorganic lead-free Cs3Cu2I5 perovskite with wide bandgap. Journal of Physical Chemistry Letters, 2019, 10(18): 5343–5350
CrossRef Pubmed Google scholar
[44]
Li Z, Li Z, Shi Z, Fang X. Facet-dependent, fast response, and broadband photodetector based on highly stable all-inorganic CsCu2I3 single crystal with 1d electronic structure. Advanced Functional Materials, 2020, 30(28): 2002634
CrossRef Google scholar
[45]
Zhao X, Niu G, Zhu J, Yang B, Yuan J H, Li S, Gao W, Hu Q, Yin L, Xue K H, Lifshitz E, Miao X, Tang J. All-inorganic copper halide as a stable and self-absorption-free X-ray scintillator. Journal of Physical Chemistry Letters, 2020, 11(5): 1873–1880
CrossRef Pubmed Google scholar
[46]
Gao W, Niu G, Yin L, Yang B, Yuan J H, Zhang D, Xue K H, Miao X, Hu Q, Du X, Tang J. One-dimensional all-inorganic K2CuBr3 with violet emission as efficient X-ray scintillators. ACS Applied Electronic Materials, 2020, 2(7): 2242–2249
CrossRef Google scholar
[47]
Lian L, Zheng M, Zhang W, Yin L, Du X, Zhang P, Zhang X, Gao J, Zhang D, Gao L, Niu G, Song H, Chen R, Lan X, Tang J, Zhang J. Efficient and reabsorption-free radioluminescence in Cs3Cu2I5 nanocrystals with self-trapped excitons. Advanced Science, 2020, 7(11): 2000195
CrossRef Pubmed Google scholar
[48]
Zhang F, Zhao Z, Chen B, Zheng H, Huang L, Liu Y, Wang Y, Rogach A L. Strongly emissive lead-free 0D Cs3Cu2I5 perovskites synthesized by a room temperature solvent evaporation crystallization for down-conversion light-emitting devices and fluorescent inks. Advanced Optical Materials, 2020, 8(8): 1901723
CrossRef Google scholar
[49]
Zeng F, Guo Y, Hu W, Tan Y, Zhang X, Feng J, Tang X. Opportunity of the lead-free all-inorganic Cs3Cu2I5 perovskite film for memristor and neuromorphic computing applications. ACS Applied Materials & Interfaces, 2020, 12(20): 23094–23101
CrossRef Pubmed Google scholar

Acknowledgements

Q. Hu acknowledges the support from the National Key Research and Development Plan of China (No. 2019YFE0107200), the National Natural Science Foundation of China (Grant No. 11705277), the Natural Science Foundation of Hubei Province (No. 2020CFB700), the Doctoral Research Foundation Project of Hubei University of Arts and Science (No. kyqdf2020023), and Innovation Research Team Project of Hubei University of Arts and Science (No. 2020kypytd001).

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(6943 KB)

Accesses

Citations

Detail

Sections
Recommended

/