Frontiers of Optoelectronics >
Magnetically controllable metasurface and its application
Received date: 15 Nov 2020
Accepted date: 19 Jan 2021
Published date: 15 Jun 2021
Copyright
The dynamic control of the metasurface opens up a vital technological approach for the development of multifunctional integrated optical devices. The magnetic field manipulation has the advantages of sub-nanosecond ultra-fast response, non-contact, and continuous adjustment. Thus, the magnetically controllable metasurface has attracted significant attention in recent years. This study introduces the basic principles of the Faraday and Kerr effect of magneto-optical (MO) materials. It classifies the typical MO materials according to their properties. It also summarizes the physical mechanism of different MO metasurfaces that combine the MO effect with plasmonic or dielectric resonance. Besides, their applications in the nonreciprocal device and MO sensing are demonstrated. The future perspectives and challenges of the research on MO metasurfaces are discussed.
Yu BI , Lingling HUANG , Xiaowei LI , Yongtian WANG . Magnetically controllable metasurface and its application[J]. Frontiers of Optoelectronics, 2021 , 14(2) : 154 -169 . DOI: 10.1007/s12200-021-1125-4
1 |
Huang L, Chang C, Zeng B, Nogan J, Luo S N, Taylor A J, Azad A K, Chen H T. Bilayer metasurfaces for dual- and broadband optical antireflection. ACS Photonics, 2017, 4(9): 2111–2116
|
2 |
Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337
|
3 |
Liu Z, Li Z, Liu Z, Cheng H, Liu W, Tang C, Gu C, Li J, Chen H T, Chen S, Tian J. Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle. ACS Photonics, 2017, 4(8): 2061–2069
|
4 |
Kim M, Wong A M, Eleftheriades G V. Optical huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients. Physical Review X, 2014, 4(4): 041042
|
5 |
Lee G Y, Yoon G, Lee S Y, Yun H, Cho J, Lee K, Kim H, Rho J, Lee B. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale, 2018, 10(9): 4237–4245
|
6 |
Li J, Chen S, Yang H, Li J, Yu P, Cheng H, Gu C, Chen H T, Tian J. Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces. Advanced Functional Materials, 2015, 25(5): 704–710
|
7 |
Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Letters, 2016, 16(4): 2818–2823
|
8 |
Cao T, Zhang L, Simpson R E, Wei C, Cryan M J. Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials. Optics Express, 2013, 21(23): 27841–27851
|
9 |
Driscoll T, Palit S, Qazilbash M M, Brehm M, Keilmann F, Chae B G, Yun S J, Kim H T, Cho S Y, Jokerst N M, Smith D R, Basov D N. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide. Applied Physics Letters, 2008, 93(2): 024101
|
10 |
Singh R, Azad A K, Jia Q X, Taylor A J, Chen H T. Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates. Optics Letters, 2011, 36(7): 1230–1232
|
11 |
Goldflam M D, Liu M K, Chapler B C, Stinson H T, Sternbach A J, McLeod A S, Zhang J D, Geng K, Royal M, Kim B J, Averitt R D, Jokerst N M, Smith D R, Kim H T, Basov D N. Voltage switching of a VO2 memory metasurface using ionic gel. Applied Physics Letters, 2014, 105(4): 041117
|
12 |
Ren M X, Wu W, Cai W, Pi B, Zhang X Z, Xu J J. Reconfigurable metasurfaces that enable light polarization control by light. Light, Science & Applications, 2017, 6(6): e16254
|
13 |
Yang H, Yu T, Wang Q, Lei M. Wave manipulation with magnetically tunable metasurfaces. Scientific Reports, 2017, 7(1): 5441
|
14 |
Armelles G, Cebollada A, Feng H Y, García-Martín A, Meneses-Rodríguez D, Zhao J, Giessen H. Interaction effects between magnetic and chiral building blocks: a new route for tunable magneto-chiral plasmonic structures. ACS Photonics, 2015, 2(9): 1272–1277
|
15 |
Ignatyeva D O, Knyazev G A, Kapralov P O, Dietler G, Sekatskii S K, Belotelov V I. Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications. Scientific Reports, 2016, 6(1): 28077
|
16 |
Knyazev G A, Kapralov P O, Gusev N A, Kalish A N, Vetoshko P M, Dagesyan S A, Shaposhnikov A N, Prokopov A R, Berzhansky V N, Zvezdin A K, Belotelov V I. Magnetoplasmonic crystals for highly sensitive magnetometry. ACS Photonics, 2018, 5(12): 4951–4959
|
17 |
Cheng F, Wang C, Su Z, Wang X, Cai Z, Sun N X, Liu Y. All-optical manipulation of magnetization in ferromagnetic thin films enhanced by plasmonic resonances. Nano Letters, 2020, 20(9): 6437–6443
|
18 |
Ho K S, Im S J, Pae J S, Ri C S, Han Y H, Herrmann J. Switchable plasmonic routers controlled by external magnetic fields by using magneto-plasmonic waveguides. Scientific Reports, 2018, 8(1): 10584
|
19 |
Wehlus T, Körner T, Leitenmeier S, Heinrich A, Stritzker B. Magneto-optical garnets for integrated optoelectronic devices. Physica Status Solidi, 2011, 208(2): 252–263
|
20 |
Yan H, Li Z, Li X, Zhu W, Avouris P, Xia F. Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene. Nano Letters, 2012, 12(7): 3766–3771
|
21 |
Wachter P. Europium chalcogenides: EuO, EuS, EuSe and EuTe. Handbook on the Physics & Chemistry of Rare Earths, 1979, 2: 507–574
|
22 |
Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270–273
|
23 |
Hui P M, Stroud D. Theory of Faraday rotation by dilute suspensions of small particles. Applied Physics Letters, 1987, 50(15): 950–952
|
24 |
Melle S, Menéndez J L, Armelles G, Navas D, Vázquez M, Nielsch K, Wehrspohn R B, Gösele U. Magneto-optical properties of nickel nanowire arrays. Applied Physics Letters, 2003, 83(22): 4547–4549
|
25 |
Bonanni V, Bonetti S, Pakizeh T, Pirzadeh Z, Chen J, Nogués J, Vavassori P, Hillenbrand R, Åkerman J, Dmitriev A. Designer magnetoplasmonics with nickel nanoferromagnets. Nano Letters, 2011, 11(12): 5333–5338
|
26 |
Maccaferri N, Bergamini L, Pancaldi M, Schmidt M K, Kataja M, Dijken S, Zabala N, Aizpurua J, Vavassori P. Anisotropic nanoantenna-based magnetoplasmonic crystals for highly enhanced and tunable magneto-optical activity. Nano Letters, 2016, 16(4): 2533–2542
|
27 |
Chen L, Gao J, Xia W, Zhang S, Tang S, Zhang W, Li D, Wu X, Du Y. Tunable Fano resonance and magneto-optical response in magnetoplasmonic structure fabricated by pure ferromagnetic metals. Physical Review B, 2016, 93(21): 214411
|
28 |
González-Díaz J B, Garcia-Martin A, Armelles G, Navas D, Vázquez M, Nielsch K, Wehrspohn R B, Gösele U. Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays. Advanced Materials, 2007, 19(18): 2643–2647
|
29 |
González-Díaz J B, García-Martín A, Reig G A. Unusual magneto-optical behavior induced by local dielectric variations under localized surface plasmon excitations. Nanoscale Research Letters, 2011, 6(1): 408
|
30 |
Ctistis G, Papaioannou E, Patoka P, Gutek J, Fumagalli P, Giersig M. Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films. Nano Letters, 2009, 9(1): 1–6
|
31 |
Rollinger M, Thielen P, Melander E, Östman E, Kapaklis V, Obry B, Cinchetti M, García-Martín A, Aeschlimann M, Papaioannou E T. Light localization and magneto-optic enhancement in Ni antidot arrays. Nano Letters, 2016, 16(4): 2432–2438
|
32 |
Chen J, Albella P, Pirzadeh Z, Alonso-González P, Huth F, Bonetti S, Bonanni V, Åkerman J, Nogués J, Vavassori P, Dmitriev A, Aizpurua J, Hillenbrand R. Plasmonic nickel nanoantennas. Small, 2011, 7(16): 2341–2347
|
33 |
Kataja M, Hakala T K, Julku A, Huttunen M J, van Dijken S, Törmä P. Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays. Nature Communications, 2015, 6(1): 7072
|
34 |
Li Y, Zhang Q, Nurmikko A V, Sun S. Enhanced magnetooptical response in dumbbell-like Ag-CoFe2O4 nanoparticle pairs. Nano Letters, 2005, 5(9): 1689–1692
|
35 |
González-Díaz J B, García-Martín A, García-Martín J M, Cebollada A, Armelles G, Sepúlveda B, Alaverdyan Y, Käll M. Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity. Small, 2008, 4(2): 202–205
|
36 |
Wang L, Yang K, Clavero C, Nelson A J, Carroll K J, Carpenter E E, Lukaszew R A. Localized surface plasmon resonance enhanced magneto-optical activity in core-shell Fe-Ag nanoparticles. Journal of Applied Physics, 2010, 107(9): 09B303
|
37 |
Wang L, Clavero C, Huba Z, Carroll K J, Carpenter E E, Gu D, Lukaszew R A. Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles. Nano Letters, 2011, 11(3): 1237–1240
|
38 |
Du G X, Mori T, Suzuki M, Saito S, Fukuda H, Takahashi M.Magneto-optical effects in nanosandwich array with plasmonic structure of Au/[Co/Pt]n/Au. Journal of Applied Physics, 2010, 107(9): 09A928
|
39 |
Armelles G, González-Díaz J B, García-Martín A, García-Martín J M, Cebollada A, González M U, Acimovic S, Cesario J, Quidant R, Badenes G. Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers. Optics Express, 2008, 16(20): 16104–16112
|
40 |
Armelles G, Cebollada A, García-Martín A, García-Martín J M, González M U, González-Díaz J B, Ferreiro-Vila E, Torrado J F. Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties. Journal of Optics A, Pure and Applied Optics, 2009, 11(11): 114023
|
41 |
Du G X, Mori T, Suzuki M, Saito S, Fukuda H, Takahashi M. Evidence of localized surface plasmon enhanced magneto-optical effect in nanodisk array. Applied Physics Letters, 2010, 96(8): 081915
|
42 |
Du G X, Mori T, Saito S, Takahashi M. Shape-enhanced magneto-optical activity: degree of freedom for active plasmonics. Physical Review B: Condensed Matter, 2010, 82(16): 161403
|
43 |
Banthí J C, Meneses-Rodríguez D, García F, González M U, García-Martín A, Cebollada A, Armelles G. High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks. Advanced Materials, 2012, 24(10): OP36–OP41
|
44 |
González-Díaz J B, García-Martín A, Armelles G, García-Martín J M, Clavero C, Cebollada A, Lukaszew R A, Skuza J R, Kumah D P, Clarke R. Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures. Physical Review B, 2007, 76(15): 153402
|
45 |
Temnov V V, Armelles G, Woggon U, Guzatov D, Cebollada A, Garcia-Martin A, Garcia-Martin J M, Thomay T, Leitenstorfer A, Bratschitsch R. Active magneto-plasmonics in hybrid metal-ferromagnet structures. Nature Photonics, 2010, 4(2): 107–111
|
46 |
Clavero C, Yang K, Skuza J R, Lukaszew R A. Magnetic-field modulation of surface plasmon polaritons on gratings. Optics Letters, 2010, 35(10): 1557–1559
|
47 |
Martín-Becerra D, Temnov V V, Thomay T, Leitenstorfer A, Bratschitsch R, Armelles G, García-Martín A, González M U. Spectral dependence of the magnetic modulation of surface plasmon polaritons in noble/ferromagnetic/noble metal films. Physical Review B, 2012, 86(3): 035118
|
48 |
Jung I, Jang H J, Han S, Acapulco J A I Jr, Park S. Magnetic modulation of surface plasmon resonance by tailoring magnetically responsive metallic block in multisegment nanorods. Chemistry of Materials, 2015, 27(24): 8433–8441
|
49 |
Martín-Becerra D, González-Díaz J B, Temnov V V, Cebollada A, Armelles G, Thomay T, Leitenstorfer A, Bratschitsch R, García-Martín A, González M U. Enhancement of the magnetic modulation of surface plasmon polaritons in Au/Co/Au films. Applied Physics Letters, 2010, 97(18): 183114
|
50 |
Lu Y H, Cho M H, Kim J B, Lee G J, Lee Y P, Rhee J Y. Magneto-optical enhancement through gyrotropic gratings. Optics Express, 2008, 16(8): 5378–5384
|
51 |
Barsukova M G, Shorokhov A S, Musorin A I, Neshev D N, Kivshar Y S, Fedyanin A A. Magneto-optical response enhanced by Mie resonances in nanoantennas. ACS Photonics, 2017, 4(10): 2390–2395
|
52 |
Barsukova M G, Musorin A I, Shorokhov A S, Fedyanin A A. Enhanced magneto-optical effects in hybrid Ni-Si metasurfaces. APL Photonics, 2019, 4(1): 016102
|
53 |
Maccaferri N, Inchausti X, García-Martín A, Cuevas J C, Tripathy D, Adeyeye A O, Vavassori P. Resonant enhancement of magneto-optical activity induced by surface plasmon polariton modes coupling in 2D magnetoplasmonic crystals. ACS Photonics, 2015, 2(12): 1769–1779
|
54 |
Belotelov V I, Bykov D A, Doskolovich L L, Kalish A N, Kotov V A, Zvezdin A K. Giant magneto-optical orientational effect in plasmonic heterostructures. Optics Letters, 2009, 34(4): 398–400
|
55 |
Belotelov V I, Kreilkamp L E, Akimov I A, Kalish A N, Bykov D A, Kasture S, Yallapragada V J, Venu Gopal A, Grishin A M, Khartsev S I, Nur-E-Alam M, Vasiliev M, Doskolovich L L, Yakovlev D R, Alameh K, Zvezdin A K, Bayer M. Plasmon-mediated magneto-optical transparency. Nature Communications, 2013, 4(1): 2128
|
56 |
Borovkova O, Kalish A, Belotelov V. Transverse magneto-optical Kerr effect in active magneto-plasmonic structures. Optics Letters, 2016, 41(19): 4593–4596
|
57 |
Kalish A N, Komarov R S, Kozhaev M A, Achanta V G, Dagesyan S A, Shaposhnikov A N, Prokopov A R, Berzhansky V N, Zvezdin A K, Belotelov V I. Magnetoplasmonic quasicrystals: an approach for multiband magneto-optical response. Optica, 2018, 5(5): 617
|
58 |
Belotelov V I, Doskolovich L L, Zvezdin A K. Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems. Physical Review Letters, 2007, 98(7): 077401
|
59 |
Chin J Y, Steinle T, Wehlus T, Dregely D, Weiss T, Belotelov V I, Stritzker B, Giessen H. Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation. Nature Communications, 2013, 4(1): 1599
|
60 |
Kreilkamp L E, Belotelov V I, Chin J Y, Neutzner S, Dregely D, Wehlus T, Akimov I A, Bayer M, Stritzker B, Giessen H. Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect. Physical Review X, 2013, 3(4): 041019
|
61 |
Belotelov V I, Doskolovich L L, Kotov V A, Bezus E A, Bykov D A, Zvezdin A K. Magnetooptical effects in the metal-dielectric gratings. Optics Communications, 2007, 278(1): 104–109
|
62 |
Belotelov V I, Bykov D A, Doskolovich L L, Kalish A N, Zvezdin A K. Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films. Journal of the Optical Society of America B, Optical Physics, 2009, 26(8): 1594–1598
|
63 |
Halagačka L, Vanwolleghem M, Postava K, Dagens B, Pištora J. Coupled mode enhanced giant magnetoplasmonics transverse Kerr effect. Optics Express, 2013, 21(19): 21741–21755
|
64 |
Dyakov S A, Fradkin I M, Gippius N A, Klompmaker L, Spitzer F, Yalcin E, Akimov I A, Bayer M, Yavsin D A, Pavlov S I, Pevtsov A B, Verbin S Y, Tikhodeev S G. Wide band enhancement of transverse magneto-optic Kerr effect in magnetite-based plasmonic crystals. Physical Review B: Condensed Matter, 2019, 100(21): 214411
|
65 |
Wang Y, Qin Y, Zhang Z. Extraordinary optical transmission property of X-shaped plasmonic nanohole arrays. Plasmonics, 2014, 9(2): 203–207
|
66 |
Li D, Lei C, Chen L, Tang Z, Zhang S, Tang S, Du Y. Waveguide plasmon resonance induced enhancement of the magneto-optics in a Ag/Bi:YIG bilayer structure. Journal of the Optical Society of America B, Optical Physics, 2015, 32(9): 2003
|
67 |
Chesnitskiy A V, Gayduk A E, Prinz V Y. Transverse magneto-optical Kerr effect in strongly coupled plasmon gratings. Plasmonics, 2018, 13(3): 885–889
|
68 |
Gamet E, Varghese B, Verrier I, Royer F. Enhancement of magneto-optical effects by a single 1D all dielectric resonant grating. Journal of Physics D, Applied Physics, 2017, 50(49): 495105
|
69 |
Levy M, Borovkova O V, Sheidler C, Blasiola B, Karki D, Jomard F, Kozhaev M A, Popova E, Keller N, Belotelov V I. Faraday rotation in iron garnet films beyond elemental substitutions. Optica, 2019, 6(5): 642
|
70 |
Royer F, Varghese B, Gamet E, Neveu S, Jourlin Y, Jamon D. Enhancement of both Faraday and Kerr effects with an all-dielectric grating based on a magneto-optical nanocomposite material. ACS Omega, 2020, 5(6): 2886–2892
|
71 |
Moncada-Villa E, Mejía-Salazar J R. High-refractive-index materials for giant enhancement of the transverse magneto-optical Kerr effect. Sensors (Basel), 2020, 20(4): 952
|
72 |
Christofi A, Kawaguchi Y, Alù A, Khanikaev A B. Giant enhancement of Faraday rotation due to electromagnetically induced transparency in all-dielectric magneto-optical metasurfaces. Optics Letters, 2018, 43(8): 1838–1841
|
73 |
Ignatyeva D O, Karki D, Voronov A A, Kozhaev M A, Krichevsky D M, Chernov A I, Levy M, Belotelov V I. All-dielectric magnetic metasurface for advanced light control in dual polarizations combined with high-Q resonances. Nature Communications, 2020, 11(1): 5487
|
74 |
Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M, Qi M. An all-silicon passive optical diode. Science, 2012, 335(6067): 447–450
|
75 |
Shi Y, Yu Z, Fan S. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nature Photonics, 2015, 9(6): 388–392
|
76 |
Peng B, Özdemir Ş K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M, Yang L. Parity–time-symmetric whispering-gallery microcavities. Nature Physics, 2014, 10(5): 394–398
|
77 |
Doerr C R, Chen L, Vermeulen D. Silicon photonics broadband modulation-based isolator. Optics Express, 2014, 22(4): 4493–4498
|
78 |
Sounas D L, Alù A. Non-reciprocal photonics based on time modulation. Nature Photonics, 2017, 11(12): 774–783
|
79 |
Sohn D B, Kim S, Bahl G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nature Photonics, 2018, 12(2): 91–97
|
80 |
Zhang C, Dulal P, Stadler B J H, Hutchings D C. Monolithically-integrated TE-mode 1D silicon-on-insulator isolators using seedlayer-free garnet. Scientific Reports, 2017, 7(1): 5820
|
81 |
Chen R, Tao D, Zhou H, Hao Y, Yang J, Wang M, Jiang X. Asymmetric multimode interference isolator based on nonreciprocal phase shift. Optics Communications, 2009, 282(5): 862–866
|
82 |
Huang D, Pintus P, Shoji Y, Morton P, Mizumoto T, Bowers J E. Integrated broadband Ce:YIG/Si Mach-Zehnder optical isolators with over 100 nm tuning range. Optics Letters, 2017, 42(23): 4901–4904
|
83 |
Liu N, Zhao J, Du L, Niu C, Sun C, Kong X, Wang Z, Li X. Giant nonreciprocal transmission in low-biased gyrotropic metasurfaces. Optics Letters, 2020, 45(21): 5917–5920
|
84 |
Liu Q, Gross S, Dekker P, Withford M J, Steel M J. Competition of Faraday rotation and birefringence in femtosecond laser direct written waveguides in magneto-optical glass. Optics Express, 2014, 22(23): 28037–28051
|
85 |
Auracher F, Witte H H. A new design for an integrated optical isolator. Optics Communications, 1975, 13(4): 435–438
|
86 |
Shoji Y, Mizumoto T, Yokoi H, Hsieh I W, Osgood R M Jr. Magneto-optical isolator with silicon waveguides fabricated by direct bonding. Applied Physics Letters, 2008, 92(7): 071117
|
87 |
Zhuromskyy O, Lohmeyer M, Bahlmann N, Hertel P, Dötsch H, Popkov A F. Analysis of nonreciprocal light propagation in multimode imaging devices. Optical and Quantum Electronics, 2000, 32(6–8): 885–897
|
88 |
Kono N, Kakihara K, Saitoh K, Koshiba M. Nonreciprocal microresonators for the miniaturization of optical waveguide isolators. Optics Express, 2007, 15(12): 7737–7751
|
89 |
Zhang Y, Du Q, Wang C, Fakhrul T, Liu S, Deng L, Huang D, Pintus P, Bowers J, Ross C A, Hu J, Bi L. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics. Optica, 2019, 6(4): 473–478
|
90 |
Regatos D, Sepúlveda B, Fariña D, Carrascosa L G, Lechuga L M. Suitable combination of noble/ferromagnetic metal multilayers for enhanced magneto-plasmonic biosensing. Optics Express, 2011, 19(9): 8336–8346
|
91 |
Manera M G, Ferreiro-Vila E, García-Martín J M, Cebollada A, García-Martín A, Giancane G, Valli L, Rella R. Enhanced magneto-optical SPR platform for amine sensing based on Zn porphyrin dimers. Sensors and Actuators B, Chemical, 2013, 182: 232–238
|
92 |
Ignatyeva D O, Knyazev G A, Kapralov P O, Dietler G, Sekatskii S K, Belotelov V I. Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications. Scientific Reports, 2016, 6(1): 28077
|
93 |
Diaz-Valencia B F, Mejía-Salazar J R, Oliveira O N Jr, Porras-Montenegro N, Albella P. Enhanced transverse magneto optical Kerr effect in magnetoplasmonic crystals for the design of highly sensitive plasmonic (bio)sensing patforms. ACS Omega, 2017, 2(11): 7682–7685
|
94 |
Caballero B, García-Martín A, Cuevas J C. Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors. ACS Photonics, 2016, 3(2): 203–208
|
95 |
Regatos D, Fariña D, Calle A, Cebollada A, Sepúlveda B, Armelles G, Lechuga L M. Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing. Journal of Applied Physics, 2010, 108(5): 054502
|
96 |
Ferreiro-Vila E, Gonzalez-Diaz J B, Fermento R, González M U, García-Martín A, García-Martín J M, Cebollada A, Armelles G, Meneses-Rodríguez D, Sandoval E M. Intertwined magneto-optical and plasmonic effects in Ag/Co/Ag layered structures. Physical Review B, 2009, 80(12): 125132
|
97 |
Traviss D, Bruck R, Mills B, Abb M, Muskens O L. Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime. Applied Physics Letters, 2013, 102(12): 121112
|
98 |
Rella R, Manera M G. Magneto-optical modulation for improved surface plasmon resonance sensors. SPIE Professional, 2016
|
99 |
Zhang Y, Wang Q, Ashall B, Zerulla D, Lee G U. Magnetic-plasmonic dual modulated FePt-Au ternary heterostructured nanorods as a promising nano-bioprobe. Advanced Materials, 2012, 24(18): 2485–2490
|
100 |
Maccaferri N, Gregorczyk K E, de Oliveira T V, Kataja M, van Dijken S, Pirzadeh Z, Dmitriev A, Åkerman J, Knez M, Vavassori P. Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas. Nature Communications, 2015, 6(1): 6150
|
101 |
Pourjamal S, Kataja M, Maccaferri N, Vavassori P, van Dijken S. Hybrid Ni/SiO2/Au dimer arrays for high-resolution refractive index sensing. Nanophotonics, 2018, 7(5): 905–912
|
102 |
Eslami S, Gibbs J G, Rechkemmer Y, van Slageren J, Alarcón-Correa M, Lee T C, Mark A G, Rikken G L J A, Fischer P. Chiral Nanomagnets. ACS Photonics, 2014, 1(11): 1231–1236
|
103 |
Armelles G, Caballero B, Prieto P, García F, Cebollada A, González M U, García-Martin A. Magnetic field modulation of chirooptical effects in magnetoplasmonic structures. Nanoscale, 2014, 6(7): 3737–3741
|
104 |
Zubritskaya I, Maccaferri N, Inchausti Ezeiza X, Vavassori P, Dmitriev A. Magnetic control of the chiroptical plasmonic surfaces. Nano Letters, 2018, 18(1): 302–307
|
105 |
Qin J, Deng L, Kang T, Nie L, Feng H, Wang H, Yang R, Liang X, Tang T, Shen J, Li C, Wang H, Luo Y, Armelles G, Bi L. Switching the optical chirality in magnetoplasmonic metasurfaces using applied magnetic fields. ACS Nano, 2020, 14(3): 2808–2816
|
106 |
Stipe B, Strand T, Poon C, Balamane H, Boone T D, Katine J A, Li J L, Rawat V, Nemoto H, Hirotsune A, Hellwig O, Ruiz R, Dobisz E, Kercher D S, Robertson N, Albrecht T R, Terris B D. Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna. Nature Photonics, 2010, 4(7): 484–488
|
107 |
Zhang Y, Wang Q, Ashall B, Zerulla D, Lee G U. Magnetic-plasmonic dual modulated FePt-Au ternary heterostructured nanorods as a promising nano-bioprobe. Advanced materials, 2012, 24(18): 2485–2490
|
108 |
Vetoshko P M, Gusev N A, Chepurnova D A, Samoilova E V, Zvezdin A K, Korotaeva A A, Belotelov V I. Rat magnetocardiography using a flux-gate sensor based on iron garnet films. Biomedical Engineering, 2016, 50(4): 237–240
|
109 |
Amendola V, Scaramuzza S, Litti L, Meneghetti M, Zuccolotto G, Rosato A, Nicolato E, Marzola P, Fracasso G, Anselmi C, Pinto M, Colombatti M. Magneto-plasmonic Au-Fe alloy nanoparticles designed for multimodal SERS-MRI-CT imaging. Small, 2014, 10(12): 2476–2486
|
110 |
Serebryannikov A E, Lakhtakia A, Ozbay E. Single and cascaded, magnetically controllable metasurfaces as terahertz filters. Journal of the Optical Society of America B, Optical Physics, 2016, 33(5): 834–841
|
111 |
Shamuilov G, Domina K, Khardikov V, Nikitin A, Goryashko V. Optical magnetic lens: towards actively tunable terahertz optics. Nanoscale, 2021, 13: 108–116
|
/
〈 | 〉 |