Magnetically controllable metasurface and its application

Yu BI, Lingling HUANG, Xiaowei LI, Yongtian WANG

PDF(2046 KB)
PDF(2046 KB)
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (2) : 154-169. DOI: 10.1007/s12200-021-1125-4
REVIEW ARTICLE
REVIEW ARTICLE

Magnetically controllable metasurface and its application

Author information +
History +

Abstract

The dynamic control of the metasurface opens up a vital technological approach for the development of multifunctional integrated optical devices. The magnetic field manipulation has the advantages of sub-nanosecond ultra-fast response, non-contact, and continuous adjustment. Thus, the magnetically controllable metasurface has attracted significant attention in recent years. This study introduces the basic principles of the Faraday and Kerr effect of magneto-optical (MO) materials. It classifies the typical MO materials according to their properties. It also summarizes the physical mechanism of different MO metasurfaces that combine the MO effect with plasmonic or dielectric resonance. Besides, their applications in the nonreciprocal device and MO sensing are demonstrated. The future perspectives and challenges of the research on MO metasurfaces are discussed.

Graphical abstract

Keywords

magneto-optical (MO) effect / MO metasurfaces / magnetoplasmonic / nonreciprocal device / MO sensing

Cite this article

Download citation ▾
Yu BI, Lingling HUANG, Xiaowei LI, Yongtian WANG. Magnetically controllable metasurface and its application. Front. Optoelectron., 2021, 14(2): 154‒169 https://doi.org/10.1007/s12200-021-1125-4

References

[1]
Huang L, Chang C, Zeng B, Nogan J, Luo S N, Taylor A J, Azad A K, Chen H T. Bilayer metasurfaces for dual- and broadband optical antireflection. ACS Photonics, 2017, 4(9): 2111–2116
CrossRef Google scholar
[2]
Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334(6054): 333–337
CrossRef Pubmed Google scholar
[3]
Liu Z, Li Z, Liu Z, Cheng H, Liu W, Tang C, Gu C, Li J, Chen H T, Chen S, Tian J. Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle. ACS Photonics, 2017, 4(8): 2061–2069
CrossRef Google scholar
[4]
Kim M, Wong A M, Eleftheriades G V. Optical huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients. Physical Review X, 2014, 4(4): 041042
CrossRef Google scholar
[5]
Lee G Y, Yoon G, Lee S Y, Yun H, Cho J, Lee K, Kim H, Rho J, Lee B. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale, 2018, 10(9): 4237–4245
CrossRef Pubmed Google scholar
[6]
Li J, Chen S, Yang H, Li J, Yu P, Cheng H, Gu C, Chen H T, Tian J. Simultaneous control of light polarization and phase distributions using plasmonic metasurfaces. Advanced Functional Materials, 2015, 25(5): 704–710
CrossRef Google scholar
[7]
Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Letters, 2016, 16(4): 2818–2823
CrossRef Pubmed Google scholar
[8]
Cao T, Zhang L, Simpson R E, Wei C, Cryan M J. Strongly tunable circular dichroism in gammadion chiral phase-change metamaterials. Optics Express, 2013, 21(23): 27841–27851
CrossRef Pubmed Google scholar
[9]
Driscoll T, Palit S, Qazilbash M M, Brehm M, Keilmann F, Chae B G, Yun S J, Kim H T, Cho S Y, Jokerst N M, Smith D R, Basov D N. Dynamic tuning of an infrared hybrid-metamaterial resonance using vanadium dioxide. Applied Physics Letters, 2008, 93(2): 024101
CrossRef Google scholar
[10]
Singh R, Azad A K, Jia Q X, Taylor A J, Chen H T. Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates. Optics Letters, 2011, 36(7): 1230–1232
CrossRef Pubmed Google scholar
[11]
Goldflam M D, Liu M K, Chapler B C, Stinson H T, Sternbach A J, McLeod A S, Zhang J D, Geng K, Royal M, Kim B J, Averitt R D, Jokerst N M, Smith D R, Kim H T, Basov D N. Voltage switching of a VO2 memory metasurface using ionic gel. Applied Physics Letters, 2014, 105(4): 041117
CrossRef Google scholar
[12]
Ren M X, Wu W, Cai W, Pi B, Zhang X Z, Xu J J. Reconfigurable metasurfaces that enable light polarization control by light. Light, Science & Applications, 2017, 6(6): e16254
CrossRef Pubmed Google scholar
[13]
Yang H, Yu T, Wang Q, Lei M. Wave manipulation with magnetically tunable metasurfaces. Scientific Reports, 2017, 7(1): 5441
CrossRef Pubmed Google scholar
[14]
Armelles G, Cebollada A, Feng H Y, García-Martín A, Meneses-Rodríguez D, Zhao J, Giessen H. Interaction effects between magnetic and chiral building blocks: a new route for tunable magneto-chiral plasmonic structures. ACS Photonics, 2015, 2(9): 1272–1277
CrossRef Google scholar
[15]
Ignatyeva D O, Knyazev G A, Kapralov P O, Dietler G, Sekatskii S K, Belotelov V I. Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications. Scientific Reports, 2016, 6(1): 28077
CrossRef Pubmed Google scholar
[16]
Knyazev G A, Kapralov P O, Gusev N A, Kalish A N, Vetoshko P M, Dagesyan S A, Shaposhnikov A N, Prokopov A R, Berzhansky V N, Zvezdin A K, Belotelov V I. Magnetoplasmonic crystals for highly sensitive magnetometry. ACS Photonics, 2018, 5(12): 4951–4959
CrossRef Google scholar
[17]
Cheng F, Wang C, Su Z, Wang X, Cai Z, Sun N X, Liu Y. All-optical manipulation of magnetization in ferromagnetic thin films enhanced by plasmonic resonances. Nano Letters, 2020, 20(9): 6437–6443
CrossRef Pubmed Google scholar
[18]
Ho K S, Im S J, Pae J S, Ri C S, Han Y H, Herrmann J. Switchable plasmonic routers controlled by external magnetic fields by using magneto-plasmonic waveguides. Scientific Reports, 2018, 8(1): 10584
CrossRef Pubmed Google scholar
[19]
Wehlus T, Körner T, Leitenmeier S, Heinrich A, Stritzker B. Magneto-optical garnets for integrated optoelectronic devices. Physica Status Solidi, 2011, 208(2): 252–263
CrossRef Google scholar
[20]
Yan H, Li Z, Li X, Zhu W, Avouris P, Xia F. Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene. Nano Letters, 2012, 12(7): 3766–3771
CrossRef Pubmed Google scholar
[21]
Wachter P. Europium chalcogenides: EuO, EuS, EuSe and EuTe. Handbook on the Physics & Chemistry of Rare Earths, 1979, 2: 507–574
CrossRef Google scholar
[22]
Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270–273
CrossRef Pubmed Google scholar
[23]
Hui P M, Stroud D. Theory of Faraday rotation by dilute suspensions of small particles. Applied Physics Letters, 1987, 50(15): 950–952
CrossRef Google scholar
[24]
Melle S, Menéndez J L, Armelles G, Navas D, Vázquez M, Nielsch K, Wehrspohn R B, Gösele U. Magneto-optical properties of nickel nanowire arrays. Applied Physics Letters, 2003, 83(22): 4547–4549
CrossRef Google scholar
[25]
Bonanni V, Bonetti S, Pakizeh T, Pirzadeh Z, Chen J, Nogués J, Vavassori P, Hillenbrand R, Åkerman J, Dmitriev A. Designer magnetoplasmonics with nickel nanoferromagnets. Nano Letters, 2011, 11(12): 5333–5338
CrossRef Pubmed Google scholar
[26]
Maccaferri N, Bergamini L, Pancaldi M, Schmidt M K, Kataja M, Dijken S, Zabala N, Aizpurua J, Vavassori P. Anisotropic nanoantenna-based magnetoplasmonic crystals for highly enhanced and tunable magneto-optical activity. Nano Letters, 2016, 16(4): 2533–2542
CrossRef Pubmed Google scholar
[27]
Chen L, Gao J, Xia W, Zhang S, Tang S, Zhang W, Li D, Wu X, Du Y. Tunable Fano resonance and magneto-optical response in magnetoplasmonic structure fabricated by pure ferromagnetic metals. Physical Review B, 2016, 93(21): 214411
CrossRef Google scholar
[28]
González-Díaz J B, Garcia-Martin A, Armelles G, Navas D, Vázquez M, Nielsch K, Wehrspohn R B, Gösele U. Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays. Advanced Materials, 2007, 19(18): 2643–2647
CrossRef Google scholar
[29]
González-Díaz J B, García-Martín A, Reig G A. Unusual magneto-optical behavior induced by local dielectric variations under localized surface plasmon excitations. Nanoscale Research Letters, 2011, 6(1): 408
CrossRef Pubmed Google scholar
[30]
Ctistis G, Papaioannou E, Patoka P, Gutek J, Fumagalli P, Giersig M. Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films. Nano Letters, 2009, 9(1): 1–6
CrossRef Pubmed Google scholar
[31]
Rollinger M, Thielen P, Melander E, Östman E, Kapaklis V, Obry B, Cinchetti M, García-Martín A, Aeschlimann M, Papaioannou E T. Light localization and magneto-optic enhancement in Ni antidot arrays. Nano Letters, 2016, 16(4): 2432–2438
CrossRef Pubmed Google scholar
[32]
Chen J, Albella P, Pirzadeh Z, Alonso-González P, Huth F, Bonetti S, Bonanni V, Åkerman J, Nogués J, Vavassori P, Dmitriev A, Aizpurua J, Hillenbrand R. Plasmonic nickel nanoantennas. Small, 2011, 7(16): 2341–2347
CrossRef Pubmed Google scholar
[33]
Kataja M, Hakala T K, Julku A, Huttunen M J, van Dijken S, Törmä P. Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays. Nature Communications, 2015, 6(1): 7072
CrossRef Pubmed Google scholar
[34]
Li Y, Zhang Q, Nurmikko A V, Sun S. Enhanced magnetooptical response in dumbbell-like Ag-CoFe2O4 nanoparticle pairs. Nano Letters, 2005, 5(9): 1689–1692
CrossRef Pubmed Google scholar
[35]
González-Díaz J B, García-Martín A, García-Martín J M, Cebollada A, Armelles G, Sepúlveda B, Alaverdyan Y, Käll M. Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity. Small, 2008, 4(2): 202–205
CrossRef Pubmed Google scholar
[36]
Wang L, Yang K, Clavero C, Nelson A J, Carroll K J, Carpenter E E, Lukaszew R A. Localized surface plasmon resonance enhanced magneto-optical activity in core-shell Fe-Ag nanoparticles. Journal of Applied Physics, 2010, 107(9): 09B303
CrossRef Google scholar
[37]
Wang L, Clavero C, Huba Z, Carroll K J, Carpenter E E, Gu D, Lukaszew R A. Plasmonics and enhanced magneto-optics in core-shell Co-Ag nanoparticles. Nano Letters, 2011, 11(3): 1237–1240
CrossRef Pubmed Google scholar
[38]
Du G X, Mori T, Suzuki M, Saito S, Fukuda H, Takahashi M.Magneto-optical effects in nanosandwich array with plasmonic structure of Au/[Co/Pt]n/Au. Journal of Applied Physics, 2010, 107(9): 09A928
CrossRef Google scholar
[39]
Armelles G, González-Díaz J B, García-Martín A, García-Martín J M, Cebollada A, González M U, Acimovic S, Cesario J, Quidant R, Badenes G. Localized surface plasmon resonance effects on the magneto-optical activity of continuous Au/Co/Au trilayers. Optics Express, 2008, 16(20): 16104–16112
CrossRef Pubmed Google scholar
[40]
Armelles G, Cebollada A, García-Martín A, García-Martín J M, González M U, González-Díaz J B, Ferreiro-Vila E, Torrado J F. Magnetoplasmonic nanostructures: systems supporting both plasmonic and magnetic properties. Journal of Optics A, Pure and Applied Optics, 2009, 11(11): 114023
CrossRef Google scholar
[41]
Du G X, Mori T, Suzuki M, Saito S, Fukuda H, Takahashi M. Evidence of localized surface plasmon enhanced magneto-optical effect in nanodisk array. Applied Physics Letters, 2010, 96(8): 081915
CrossRef Google scholar
[42]
Du G X, Mori T, Saito S, Takahashi M. Shape-enhanced magneto-optical activity: degree of freedom for active plasmonics. Physical Review B: Condensed Matter, 2010, 82(16): 161403
CrossRef Google scholar
[43]
Banthí J C, Meneses-Rodríguez D, García F, González M U, García-Martín A, Cebollada A, Armelles G. High magneto-optical activity and low optical losses in metal-dielectric Au/Co/Au-SiO2 magnetoplasmonic nanodisks. Advanced Materials, 2012, 24(10): OP36–OP41
CrossRef Pubmed Google scholar
[44]
González-Díaz J B, García-Martín A, Armelles G, García-Martín J M, Clavero C, Cebollada A, Lukaszew R A, Skuza J R, Kumah D P, Clarke R. Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures. Physical Review B, 2007, 76(15): 153402
CrossRef Google scholar
[45]
Temnov V V, Armelles G, Woggon U, Guzatov D, Cebollada A, Garcia-Martin A, Garcia-Martin J M, Thomay T, Leitenstorfer A, Bratschitsch R. Active magneto-plasmonics in hybrid metal-ferromagnet structures. Nature Photonics, 2010, 4(2): 107–111
CrossRef Google scholar
[46]
Clavero C, Yang K, Skuza J R, Lukaszew R A. Magnetic-field modulation of surface plasmon polaritons on gratings. Optics Letters, 2010, 35(10): 1557–1559
CrossRef Pubmed Google scholar
[47]
Martín-Becerra D, Temnov V V, Thomay T, Leitenstorfer A, Bratschitsch R, Armelles G, García-Martín A, González M U. Spectral dependence of the magnetic modulation of surface plasmon polaritons in noble/ferromagnetic/noble metal films. Physical Review B, 2012, 86(3): 035118
CrossRef Google scholar
[48]
Jung I, Jang H J, Han S, Acapulco J A I Jr, Park S. Magnetic modulation of surface plasmon resonance by tailoring magnetically responsive metallic block in multisegment nanorods. Chemistry of Materials, 2015, 27(24): 8433–8441
CrossRef Google scholar
[49]
Martín-Becerra D, González-Díaz J B, Temnov V V, Cebollada A, Armelles G, Thomay T, Leitenstorfer A, Bratschitsch R, García-Martín A, González M U. Enhancement of the magnetic modulation of surface plasmon polaritons in Au/Co/Au films. Applied Physics Letters, 2010, 97(18): 183114
CrossRef Google scholar
[50]
Lu Y H, Cho M H, Kim J B, Lee G J, Lee Y P, Rhee J Y. Magneto-optical enhancement through gyrotropic gratings. Optics Express, 2008, 16(8): 5378–5384
CrossRef Pubmed Google scholar
[51]
Barsukova M G, Shorokhov A S, Musorin A I, Neshev D N, Kivshar Y S, Fedyanin A A. Magneto-optical response enhanced by Mie resonances in nanoantennas. ACS Photonics, 2017, 4(10): 2390–2395
CrossRef Google scholar
[52]
Barsukova M G, Musorin A I, Shorokhov A S, Fedyanin A A. Enhanced magneto-optical effects in hybrid Ni-Si metasurfaces. APL Photonics, 2019, 4(1): 016102
CrossRef Google scholar
[53]
Maccaferri N, Inchausti X, García-Martín A, Cuevas J C, Tripathy D, Adeyeye A O, Vavassori P. Resonant enhancement of magneto-optical activity induced by surface plasmon polariton modes coupling in 2D magnetoplasmonic crystals. ACS Photonics, 2015, 2(12): 1769–1779
CrossRef Google scholar
[54]
Belotelov V I, Bykov D A, Doskolovich L L, Kalish A N, Kotov V A, Zvezdin A K. Giant magneto-optical orientational effect in plasmonic heterostructures. Optics Letters, 2009, 34(4): 398–400
CrossRef Pubmed Google scholar
[55]
Belotelov V I, Kreilkamp L E, Akimov I A, Kalish A N, Bykov D A, Kasture S, Yallapragada V J, Venu Gopal A, Grishin A M, Khartsev S I, Nur-E-Alam M, Vasiliev M, Doskolovich L L, Yakovlev D R, Alameh K, Zvezdin A K, Bayer M. Plasmon-mediated magneto-optical transparency. Nature Communications, 2013, 4(1): 2128
CrossRef Pubmed Google scholar
[56]
Borovkova O, Kalish A, Belotelov V. Transverse magneto-optical Kerr effect in active magneto-plasmonic structures. Optics Letters, 2016, 41(19): 4593–4596
CrossRef Pubmed Google scholar
[57]
Kalish A N, Komarov R S, Kozhaev M A, Achanta V G, Dagesyan S A, Shaposhnikov A N, Prokopov A R, Berzhansky V N, Zvezdin A K, Belotelov V I. Magnetoplasmonic quasicrystals: an approach for multiband magneto-optical response. Optica, 2018, 5(5): 617
CrossRef Google scholar
[58]
Belotelov V I, Doskolovich L L, Zvezdin A K. Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems. Physical Review Letters, 2007, 98(7): 077401
CrossRef Pubmed Google scholar
[59]
Chin J Y, Steinle T, Wehlus T, Dregely D, Weiss T, Belotelov V I, Stritzker B, Giessen H. Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation. Nature Communications, 2013, 4(1): 1599
CrossRef Pubmed Google scholar
[60]
Kreilkamp L E, Belotelov V I, Chin J Y, Neutzner S, Dregely D, Wehlus T, Akimov I A, Bayer M, Stritzker B, Giessen H. Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect. Physical Review X, 2013, 3(4): 041019
CrossRef Google scholar
[61]
Belotelov V I, Doskolovich L L, Kotov V A, Bezus E A, Bykov D A, Zvezdin A K. Magnetooptical effects in the metal-dielectric gratings. Optics Communications, 2007, 278(1): 104–109
CrossRef Google scholar
[62]
Belotelov V I, Bykov D A, Doskolovich L L, Kalish A N, Zvezdin A K. Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films. Journal of the Optical Society of America B, Optical Physics, 2009, 26(8): 1594–1598
CrossRef Google scholar
[63]
Halagačka L, Vanwolleghem M, Postava K, Dagens B, Pištora J. Coupled mode enhanced giant magnetoplasmonics transverse Kerr effect. Optics Express, 2013, 21(19): 21741–21755
CrossRef Pubmed Google scholar
[64]
Dyakov S A, Fradkin I M, Gippius N A, Klompmaker L, Spitzer F, Yalcin E, Akimov I A, Bayer M, Yavsin D A, Pavlov S I, Pevtsov A B, Verbin S Y, Tikhodeev S G. Wide band enhancement of transverse magneto-optic Kerr effect in magnetite-based plasmonic crystals. Physical Review B: Condensed Matter, 2019, 100(21): 214411
CrossRef Google scholar
[65]
Wang Y, Qin Y, Zhang Z. Extraordinary optical transmission property of X-shaped plasmonic nanohole arrays. Plasmonics, 2014, 9(2): 203–207
CrossRef Google scholar
[66]
Li D, Lei C, Chen L, Tang Z, Zhang S, Tang S, Du Y. Waveguide plasmon resonance induced enhancement of the magneto-optics in a Ag/Bi:YIG bilayer structure. Journal of the Optical Society of America B, Optical Physics, 2015, 32(9): 2003
CrossRef Google scholar
[67]
Chesnitskiy A V, Gayduk A E, Prinz V Y. Transverse magneto-optical Kerr effect in strongly coupled plasmon gratings. Plasmonics, 2018, 13(3): 885–889
CrossRef Google scholar
[68]
Gamet E, Varghese B, Verrier I, Royer F. Enhancement of magneto-optical effects by a single 1D all dielectric resonant grating. Journal of Physics D, Applied Physics, 2017, 50(49): 495105
CrossRef Google scholar
[69]
Levy M, Borovkova O V, Sheidler C, Blasiola B, Karki D, Jomard F, Kozhaev M A, Popova E, Keller N, Belotelov V I. Faraday rotation in iron garnet films beyond elemental substitutions. Optica, 2019, 6(5): 642
CrossRef Google scholar
[70]
Royer F, Varghese B, Gamet E, Neveu S, Jourlin Y, Jamon D. Enhancement of both Faraday and Kerr effects with an all-dielectric grating based on a magneto-optical nanocomposite material. ACS Omega, 2020, 5(6): 2886–2892
CrossRef Pubmed Google scholar
[71]
Moncada-Villa E, Mejía-Salazar J R. High-refractive-index materials for giant enhancement of the transverse magneto-optical Kerr effect. Sensors (Basel), 2020, 20(4): 952
CrossRef Pubmed Google scholar
[72]
Christofi A, Kawaguchi Y, Alù A, Khanikaev A B. Giant enhancement of Faraday rotation due to electromagnetically induced transparency in all-dielectric magneto-optical metasurfaces. Optics Letters, 2018, 43(8): 1838–1841
CrossRef Pubmed Google scholar
[73]
Ignatyeva D O, Karki D, Voronov A A, Kozhaev M A, Krichevsky D M, Chernov A I, Levy M, Belotelov V I. All-dielectric magnetic metasurface for advanced light control in dual polarizations combined with high-Q resonances. Nature Communications, 2020, 11(1): 5487
CrossRef Pubmed Google scholar
[74]
Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M, Qi M. An all-silicon passive optical diode. Science, 2012, 335(6067): 447–450
CrossRef Pubmed Google scholar
[75]
Shi Y, Yu Z, Fan S. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nature Photonics, 2015, 9(6): 388–392
CrossRef Google scholar
[76]
Peng B, Özdemir Ş K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M, Yang L. Parity–time-symmetric whispering-gallery microcavities. Nature Physics, 2014, 10(5): 394–398
CrossRef Google scholar
[77]
Doerr C R, Chen L, Vermeulen D. Silicon photonics broadband modulation-based isolator. Optics Express, 2014, 22(4): 4493–4498
CrossRef Pubmed Google scholar
[78]
Sounas D L, Alù A. Non-reciprocal photonics based on time modulation. Nature Photonics, 2017, 11(12): 774–783
CrossRef Google scholar
[79]
Sohn D B, Kim S, Bahl G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits. Nature Photonics, 2018, 12(2): 91–97
CrossRef Google scholar
[80]
Zhang C, Dulal P, Stadler B J H, Hutchings D C. Monolithically-integrated TE-mode 1D silicon-on-insulator isolators using seedlayer-free garnet. Scientific Reports, 2017, 7(1): 5820
CrossRef Pubmed Google scholar
[81]
Chen R, Tao D, Zhou H, Hao Y, Yang J, Wang M, Jiang X. Asymmetric multimode interference isolator based on nonreciprocal phase shift. Optics Communications, 2009, 282(5): 862–866
CrossRef Google scholar
[82]
Huang D, Pintus P, Shoji Y, Morton P, Mizumoto T, Bowers J E. Integrated broadband Ce:YIG/Si Mach-Zehnder optical isolators with over 100 nm tuning range. Optics Letters, 2017, 42(23): 4901–4904
CrossRef Pubmed Google scholar
[83]
Liu N, Zhao J, Du L, Niu C, Sun C, Kong X, Wang Z, Li X. Giant nonreciprocal transmission in low-biased gyrotropic metasurfaces. Optics Letters, 2020, 45(21): 5917–5920
CrossRef Pubmed Google scholar
[84]
Liu Q, Gross S, Dekker P, Withford M J, Steel M J. Competition of Faraday rotation and birefringence in femtosecond laser direct written waveguides in magneto-optical glass. Optics Express, 2014, 22(23): 28037–28051
CrossRef Pubmed Google scholar
[85]
Auracher F, Witte H H. A new design for an integrated optical isolator. Optics Communications, 1975, 13(4): 435–438
CrossRef Google scholar
[86]
Shoji Y, Mizumoto T, Yokoi H, Hsieh I W, Osgood R M Jr. Magneto-optical isolator with silicon waveguides fabricated by direct bonding. Applied Physics Letters, 2008, 92(7): 071117
CrossRef Google scholar
[87]
Zhuromskyy O, Lohmeyer M, Bahlmann N, Hertel P, Dötsch H, Popkov A F. Analysis of nonreciprocal light propagation in multimode imaging devices. Optical and Quantum Electronics, 2000, 32(6–8): 885–897
CrossRef Google scholar
[88]
Kono N, Kakihara K, Saitoh K, Koshiba M. Nonreciprocal microresonators for the miniaturization of optical waveguide isolators. Optics Express, 2007, 15(12): 7737–7751
CrossRef Pubmed Google scholar
[89]
Zhang Y, Du Q, Wang C, Fakhrul T, Liu S, Deng L, Huang D, Pintus P, Bowers J, Ross C A, Hu J, Bi L. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics. Optica, 2019, 6(4): 473–478
CrossRef Google scholar
[90]
Regatos D, Sepúlveda B, Fariña D, Carrascosa L G, Lechuga L M. Suitable combination of noble/ferromagnetic metal multilayers for enhanced magneto-plasmonic biosensing. Optics Express, 2011, 19(9): 8336–8346
CrossRef Pubmed Google scholar
[91]
Manera M G, Ferreiro-Vila E, García-Martín J M, Cebollada A, García-Martín A, Giancane G, Valli L, Rella R. Enhanced magneto-optical SPR platform for amine sensing based on Zn porphyrin dimers. Sensors and Actuators B, Chemical, 2013, 182: 232–238
CrossRef Google scholar
[92]
Ignatyeva D O, Knyazev G A, Kapralov P O, Dietler G, Sekatskii S K, Belotelov V I. Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications. Scientific Reports, 2016, 6(1): 28077
CrossRef Pubmed Google scholar
[93]
Diaz-Valencia B F, Mejía-Salazar J R, Oliveira O N Jr, Porras-Montenegro N, Albella P. Enhanced transverse magneto optical Kerr effect in magnetoplasmonic crystals for the design of highly sensitive plasmonic (bio)sensing patforms. ACS Omega, 2017, 2(11): 7682–7685
CrossRef Pubmed Google scholar
[94]
Caballero B, García-Martín A, Cuevas J C. Hybrid magnetoplasmonic crystals boost the performance of nanohole arrays as plasmonic sensors. ACS Photonics, 2016, 3(2): 203–208
CrossRef Google scholar
[95]
Regatos D, Fariña D, Calle A, Cebollada A, Sepúlveda B, Armelles G, Lechuga L M. Au/Fe/Au multilayer transducers for magneto-optic surface plasmon resonance sensing. Journal of Applied Physics, 2010, 108(5): 054502
CrossRef Google scholar
[96]
Ferreiro-Vila E, Gonzalez-Diaz J B, Fermento R, González M U, García-Martín A, García-Martín J M, Cebollada A, Armelles G, Meneses-Rodríguez D, Sandoval E M. Intertwined magneto-optical and plasmonic effects in Ag/Co/Ag layered structures. Physical Review B, 2009, 80(12): 125132
CrossRef Google scholar
[97]
Traviss D, Bruck R, Mills B, Abb M, Muskens O L. Ultrafast plasmonics using transparent conductive oxide hybrids in the epsilon-near-zero regime. Applied Physics Letters, 2013, 102(12): 121112
CrossRef Google scholar
[98]
Rella R, Manera M G. Magneto-optical modulation for improved surface plasmon resonance sensors. SPIE Professional, 2016
[99]
Zhang Y, Wang Q, Ashall B, Zerulla D, Lee G U. Magnetic-plasmonic dual modulated FePt-Au ternary heterostructured nanorods as a promising nano-bioprobe. Advanced Materials, 2012, 24(18): 2485–2490
CrossRef Pubmed Google scholar
[100]
Maccaferri N, Gregorczyk K E, de Oliveira T V, Kataja M, van Dijken S, Pirzadeh Z, Dmitriev A, Åkerman J, Knez M, Vavassori P. Ultrasensitive and label-free molecular-level detection enabled by light phase control in magnetoplasmonic nanoantennas. Nature Communications, 2015, 6(1): 6150
CrossRef Pubmed Google scholar
[101]
Pourjamal S, Kataja M, Maccaferri N, Vavassori P, van Dijken S. Hybrid Ni/SiO2/Au dimer arrays for high-resolution refractive index sensing. Nanophotonics, 2018, 7(5): 905–912
CrossRef Google scholar
[102]
Eslami S, Gibbs J G, Rechkemmer Y, van Slageren J, Alarcón-Correa M, Lee T C, Mark A G, Rikken G L J A, Fischer P. Chiral Nanomagnets. ACS Photonics, 2014, 1(11): 1231–1236
CrossRef Google scholar
[103]
Armelles G, Caballero B, Prieto P, García F, Cebollada A, González M U, García-Martin A. Magnetic field modulation of chirooptical effects in magnetoplasmonic structures. Nanoscale, 2014, 6(7): 3737–3741
CrossRef Pubmed Google scholar
[104]
Zubritskaya I, Maccaferri N, Inchausti Ezeiza X, Vavassori P, Dmitriev A. Magnetic control of the chiroptical plasmonic surfaces. Nano Letters, 2018, 18(1): 302–307
CrossRef Pubmed Google scholar
[105]
Qin J, Deng L, Kang T, Nie L, Feng H, Wang H, Yang R, Liang X, Tang T, Shen J, Li C, Wang H, Luo Y, Armelles G, Bi L. Switching the optical chirality in magnetoplasmonic metasurfaces using applied magnetic fields. ACS Nano, 2020, 14(3): 2808–2816
CrossRef Pubmed Google scholar
[106]
Stipe B, Strand T, Poon C, Balamane H, Boone T D, Katine J A, Li J L, Rawat V, Nemoto H, Hirotsune A, Hellwig O, Ruiz R, Dobisz E, Kercher D S, Robertson N, Albrecht T R, Terris B D. Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna. Nature Photonics, 2010, 4(7): 484–488
CrossRef Google scholar
[107]
Zhang Y, Wang Q, Ashall B, Zerulla D, Lee G U. Magnetic-plasmonic dual modulated FePt-Au ternary heterostructured nanorods as a promising nano-bioprobe. Advanced materials, 2012, 24(18): 2485–2490
CrossRef Pubmed Google scholar
[108]
Vetoshko P M, Gusev N A, Chepurnova D A, Samoilova E V, Zvezdin A K, Korotaeva A A, Belotelov V I. Rat magnetocardiography using a flux-gate sensor based on iron garnet films. Biomedical Engineering, 2016, 50(4): 237–240
CrossRef Google scholar
[109]
Amendola V, Scaramuzza S, Litti L, Meneghetti M, Zuccolotto G, Rosato A, Nicolato E, Marzola P, Fracasso G, Anselmi C, Pinto M, Colombatti M. Magneto-plasmonic Au-Fe alloy nanoparticles designed for multimodal SERS-MRI-CT imaging. Small, 2014, 10(12): 2476–2486
CrossRef Pubmed Google scholar
[110]
Serebryannikov A E, Lakhtakia A, Ozbay E. Single and cascaded, magnetically controllable metasurfaces as terahertz filters. Journal of the Optical Society of America B, Optical Physics, 2016, 33(5): 834–841
CrossRef Google scholar
[111]
Shamuilov G, Domina K, Khardikov V, Nikitin A, Goryashko V. Optical magnetic lens: towards actively tunable terahertz optics. Nanoscale, 2021, 13: 108–116
CrossRef Google scholar

Acknowledgements

The authors acknowledge the financial support from the National Key Research and Development Program of China (No. 2017YFB1002900), Fok Ying-Tong Education Foundation of China (No. 161009), the National Natural Science Foundation of China (Grant No. 61775019), and Beijing Outstanding Young Scientist Program (No. BJJWZYJH01201910007022).

Conflicts of interest

The authors declare no conflict of interest.

RIGHTS & PERMISSIONS

2021 Higher Education Press
AI Summary AI Mindmap
PDF(2046 KB)

Accesses

Citations

Detail

Sections
Recommended

/