Frontiers of Optoelectronics >
A corona modulation device structure and mechanism based on perovskite quantum dots random laser pumped using an electron beam
Received date: 18 May 2020
Accepted date: 02 Jul 2020
Published date: 15 Sep 2020
Copyright
Although laser pumping using electron beam (EB) has high transient power output and easy modulation based on perovskite quantum dot (PQD) film, its lasing emitting direction is the same as the pumped EB’s direction. Thus, realizing the conventional direct device structure through the film lasing mechanism is extremely difficult. Therefore, using the random lasing principle, herein, we proposed a corona modulation device structure based on PQDs random laser pumped using an EB. We discussed and stimulated the optimized designed method of the device in terms of parameters of the electronic optical device and the utilization ratio of output power and its modulation extinction ratio, respectively. According to the simulation results, this type of device structure can effectively satisfy the new random lasing mechanism in terms of high-speed and high-power modulation.
Key words: corona; modulation; perovskite quantum dot (PQD); random laser; electron beam (EB)
Yan ZHU , Yining MU , Fanqi TANG , Peng DU , Hang REN . A corona modulation device structure and mechanism based on perovskite quantum dots random laser pumped using an electron beam[J]. Frontiers of Optoelectronics, 2020 , 13(3) : 291 -302 . DOI: 10.1007/s12200-020-1045-8
1 |
Li C, Zang Z, Han C, Hu Z, Tang X, Du J, Leng Y, Sun K. Highly compact CsPbBr3 perovskite thin films decorated by ZnO nano particles for enhanced random lasing. Nano Energy, 2017, 40(8): 195–202
|
2 |
Dong R, Fang Y, Chae J, Dai J, Xiao Z, Dong Q, Yuan Y, Centrone A, Zeng X C, Huang J. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Advanced Materials, 2015, 27(11): 1912–1918
|
3 |
Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G. Perovskite materials for light-emitting diodes and lasers. Advanced Materials, 2016, 28(32): 6804–6834
|
4 |
Zhang Q, Yin Y. All-inorganic metal halide perovskite nanocrystals: opportunities and challenges. ACS Central Science, 2018, 4(6): 668–679
|
5 |
Wei Y, Cheng Z, Lin J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chemical Society Reviews, 2019, 48(1): 310–350
|
6 |
Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J. Electron-hole diffusion lengths>175 µm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225): 967–970
|
7 |
Ha S T, Su R, Xing J, Zhang Q, Xiong Q. Metal halide perovskite nanomaterials: synthesis and applications. Chemical Science (Cambridge), 2017, 8(4): 2522–2536
|
8 |
Zhang Y, Wu G, Liu F, Ding C, Zou Z, Shen Q. Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices. Chemical Society Reviews, 2020, 49(1): 49–84
|
9 |
Kodaimati M S, Wang C, Chapman C, Schatz G C, Weiss E A. Distance-dependence of interparticle energy transfer in the near-infrared within electrostatic assemblies of PbS quantum dots. ACS Nano, 2017, 11(5): 5041–5050
|
10 |
Bergren M R, Palomaki P K B, Neale N R, Furtak T E, Beard M C. Size-dependent exciton formation dynamics in colloidal silicon quantum dots. ACS Nano, 2016, 10(2): 2316–2323
|
11 |
Lee K H, Han C Y, Kang H D, Ko H, Lee C, Lee J, Myoung N, Yim S, Yang H. Highly efficient, color-reproducible full-color electroluminescent devices based on red/green/blue quantum dot-mixed multilayer. ACS Nano, 2015, 9(11): 10941–10949
|
12 |
Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy & Environmental Science, 2014, 7(8): 2619–2623
|
13 |
Guan H, Zhao S, Wang H, Yan D, Wang M, Zang Z. Room temperature synthesis of stable single silica-coated CsPbBr3 quantum dots combining tunable red emission of Ag-In-Zn-S for high-CRI white light-emitting diodes. Nano Energy, 2020, 67(1): 104279
|
14 |
Sun C, Zhang Y, Ruan C, Yin C, Wang X, Wang Y, Yu W W. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Advanced Materials, 2016, 28(45): 10088–10094
|
15 |
Tang X, Hu Z, Chen W, Xing X, Zang Z, Hu W, Qiu J, Du J, Leng Y, Jiang X, Mai L. Room temperature single-photon emission and lasing for all-inorganic colloidal perovskite quantum dots. Nano Energy, 2016, 28(2): 462–468
|
16 |
Wang H C, Lin S Y, Tang A C, Singh B P, Tong H C, Chen C Y, Lee Y C, Tsai T L, Liu R S. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angewandte Chemie International Edition, 2016, 55(28): 7924–7929
|
17 |
Dursun I, Shen C, Parida M R, Pan J, Sarmah S P, Priante D, Alyami N, Liu J, Saidaminov M I, Alias M S, Abdelhady A L, Ng T K, Mohammed O F, Ooi B S, Bakr O M. Perovskite nanocrystals as a color converter for visible light communication. ACS Photonics, 2016, 3(7): 1150–1156
|
18 |
Rainò G, Becker M A, Bodnarchuk M I, Mahrt R F, Kovalenko M V, Stöferle T. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature, 2018, 563(7733): 671–675
|
19 |
Kang J, Wang L W. High defect tolerance in lead halide perovskite CsPbBr3. Journal of Physical Chemistry Letters, 2017, 8(2): 489–493
|
20 |
Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature, 2018, 562(7726): 245–248
|
21 |
Pan S, Deka S, Amili A E, Gu Q, Fainman Y. Nanolasers: Second-order intensity correlation, direct modulation and electromagnetic isolation in array architectures. Progress in Quantum Electronics, 2018, 59(3): 1–18
|
22 |
Fan H, Mu Y, Liu C, Zhu Y, Liu G, Wang S, Li Y, Du P. Random lasing of CsPbBr3 perovskite thin films pumped by modulated electron beam. Chinese Optics Letters, 2020, 18(1): 011403
|
23 |
Mu Y, Zhang T, Chen T, Tang F, Yang J, Liu C, Chen Z, Zhao Y, Du P, Fan H, Zhu Y, Liu G, Li P. Manufacturing and characterization on a three-dimensional random resonator of porous silicon/TiO2 nanowires for continuous light pumping lasing of perovskite quantum dots. Nano, 2020, 15(02): 2050016
|
24 |
Du P, Mu Y, Ren H, Fan H, Zhu Y, Li Y, Idelfonso M. Transient luminescence characteristics of random laser emission based on electron beam pumping perovskite nanocrystals. Acta Photonica Sinica, 2020, 49(04): 146–152
|
25 |
Yan D, Shi T, Zang Z, Zhou T, Liu Z, Zhang Z, Du J, Leng Y, Tang X. Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification. Small, 2019, 23(15): 1901173
|
26 |
Wang H, Zhang P, Zang Z. High performance CsPbBr3 quantum dots photodetectors by using zinc oxide nanorods arrays as an electron-transport layer. Applied Physics Letters, 2020, 116(16): 162103
|
/
〈 | 〉 |