A corona modulation device structure and mechanism based on perovskite quantum dots random laser pumped using an electron beam

Yan ZHU, Yining MU, Fanqi TANG, Peng DU, Hang REN

PDF(5242 KB)
PDF(5242 KB)
Front. Optoelectron. ›› 2020, Vol. 13 ›› Issue (3) : 291-302. DOI: 10.1007/s12200-020-1045-8
RESEARCH ARTICLE
RESEARCH ARTICLE

A corona modulation device structure and mechanism based on perovskite quantum dots random laser pumped using an electron beam

Author information +
History +

Abstract

Although laser pumping using electron beam (EB) has high transient power output and easy modulation based on perovskite quantum dot (PQD) film, its lasing emitting direction is the same as the pumped EB’s direction. Thus, realizing the conventional direct device structure through the film lasing mechanism is extremely difficult. Therefore, using the random lasing principle, herein, we proposed a corona modulation device structure based on PQDs random laser pumped using an EB. We discussed and stimulated the optimized designed method of the device in terms of parameters of the electronic optical device and the utilization ratio of output power and its modulation extinction ratio, respectively. According to the simulation results, this type of device structure can effectively satisfy the new random lasing mechanism in terms of high-speed and high-power modulation.

Graphical abstract

Keywords

corona / modulation / perovskite quantum dot (PQD) / random laser / electron beam (EB)

Cite this article

Download citation ▾
Yan ZHU, Yining MU, Fanqi TANG, Peng DU, Hang REN. A corona modulation device structure and mechanism based on perovskite quantum dots random laser pumped using an electron beam. Front. Optoelectron., 2020, 13(3): 291‒302 https://doi.org/10.1007/s12200-020-1045-8

References

[1]
Li C, Zang Z, Han C, Hu Z, Tang X, Du J, Leng Y, Sun K. Highly compact CsPbBr3 perovskite thin films decorated by ZnO nano particles for enhanced random lasing. Nano Energy, 2017, 40(8): 195–202
CrossRef Google scholar
[2]
Dong R, Fang Y, Chae J, Dai J, Xiao Z, Dong Q, Yuan Y, Centrone A, Zeng X C, Huang J. High-gain and low-driving-voltage photodetectors based on organolead triiodide perovskites. Advanced Materials, 2015, 27(11): 1912–1918
CrossRef Pubmed Google scholar
[3]
Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G. Perovskite materials for light-emitting diodes and lasers. Advanced Materials, 2016, 28(32): 6804–6834
CrossRef Pubmed Google scholar
[4]
Zhang Q, Yin Y. All-inorganic metal halide perovskite nanocrystals: opportunities and challenges. ACS Central Science, 2018, 4(6): 668–679
CrossRef Pubmed Google scholar
[5]
Wei Y, Cheng Z, Lin J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chemical Society Reviews, 2019, 48(1): 310–350
CrossRef Pubmed Google scholar
[6]
Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J. Electron-hole diffusion lengths>175 µm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225): 967–970
CrossRef Pubmed Google scholar
[7]
Ha S T, Su R, Xing J, Zhang Q, Xiong Q. Metal halide perovskite nanomaterials: synthesis and applications. Chemical Science (Cambridge), 2017, 8(4): 2522–2536
CrossRef Pubmed Google scholar
[8]
Zhang Y, Wu G, Liu F, Ding C, Zou Z, Shen Q. Photoexcited carrier dynamics in colloidal quantum dot solar cells: insights into individual quantum dots, quantum dot solid films and devices. Chemical Society Reviews, 2020, 49(1): 49–84
CrossRef Pubmed Google scholar
[9]
Kodaimati M S, Wang C, Chapman C, Schatz G C, Weiss E A. Distance-dependence of interparticle energy transfer in the near-infrared within electrostatic assemblies of PbS quantum dots. ACS Nano, 2017, 11(5): 5041–5050
CrossRef Pubmed Google scholar
[10]
Bergren M R, Palomaki P K B, Neale N R, Furtak T E, Beard M C. Size-dependent exciton formation dynamics in colloidal silicon quantum dots. ACS Nano, 2016, 10(2): 2316–2323
CrossRef Pubmed Google scholar
[11]
Lee K H, Han C Y, Kang H D, Ko H, Lee C, Lee J, Myoung N, Yim S, Yang H. Highly efficient, color-reproducible full-color electroluminescent devices based on red/green/blue quantum dot-mixed multilayer. ACS Nano, 2015, 9(11): 10941–10949
CrossRef Google scholar
[12]
Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy & Environmental Science, 2014, 7(8): 2619–2623
CrossRef Google scholar
[13]
Guan H, Zhao S, Wang H, Yan D, Wang M, Zang Z. Room temperature synthesis of stable single silica-coated CsPbBr3 quantum dots combining tunable red emission of Ag-In-Zn-S for high-CRI white light-emitting diodes. Nano Energy, 2020, 67(1): 104279
CrossRef Google scholar
[14]
Sun C, Zhang Y, Ruan C, Yin C, Wang X, Wang Y, Yu W W. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Advanced Materials, 2016, 28(45): 10088–10094
CrossRef Pubmed Google scholar
[15]
Tang X, Hu Z, Chen W, Xing X, Zang Z, Hu W, Qiu J, Du J, Leng Y, Jiang X, Mai L. Room temperature single-photon emission and lasing for all-inorganic colloidal perovskite quantum dots. Nano Energy, 2016, 28(2): 462–468
CrossRef Google scholar
[16]
Wang H C, Lin S Y, Tang A C, Singh B P, Tong H C, Chen C Y, Lee Y C, Tsai T L, Liu R S. Mesoporous silica particles integrated with all-inorganic CsPbBr3 perovskite quantum-dot nanocomposites (MP-PQDs) with high stability and wide color gamut used for backlight display. Angewandte Chemie International Edition, 2016, 55(28): 7924–7929
CrossRef Pubmed Google scholar
[17]
Dursun I, Shen C, Parida M R, Pan J, Sarmah S P, Priante D, Alyami N, Liu J, Saidaminov M I, Alias M S, Abdelhady A L, Ng T K, Mohammed O F, Ooi B S, Bakr O M. Perovskite nanocrystals as a color converter for visible light communication. ACS Photonics, 2016, 3(7): 1150–1156
CrossRef Google scholar
[18]
Rainò G, Becker M A, Bodnarchuk M I, Mahrt R F, Kovalenko M V, Stöferle T. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature, 2018, 563(7733): 671–675
CrossRef Pubmed Google scholar
[19]
Kang J, Wang L W. High defect tolerance in lead halide perovskite CsPbBr3. Journal of Physical Chemistry Letters, 2017, 8(2): 489–493
CrossRef Pubmed Google scholar
[20]
Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature, 2018, 562(7726): 245–248
CrossRef Pubmed Google scholar
[21]
Pan S, Deka S, Amili A E, Gu Q, Fainman Y. Nanolasers: Second-order intensity correlation, direct modulation and electromagnetic isolation in array architectures. Progress in Quantum Electronics, 2018, 59(3): 1–18
CrossRef Google scholar
[22]
Fan H, Mu Y, Liu C, Zhu Y, Liu G, Wang S, Li Y, Du P. Random lasing of CsPbBr3 perovskite thin films pumped by modulated electron beam. Chinese Optics Letters, 2020, 18(1): 011403
CrossRef Google scholar
[23]
Mu Y, Zhang T, Chen T, Tang F, Yang J, Liu C, Chen Z, Zhao Y, Du P, Fan H, Zhu Y, Liu G, Li P. Manufacturing and characterization on a three-dimensional random resonator of porous silicon/TiO2 nanowires for continuous light pumping lasing of perovskite quantum dots. Nano, 2020, 15(02): 2050016
CrossRef Google scholar
[24]
Du P, Mu Y, Ren H, Fan H, Zhu Y, Li Y, Idelfonso M. Transient luminescence characteristics of random laser emission based on electron beam pumping perovskite nanocrystals. Acta Photonica Sinica, 2020, 49(04): 146–152
[25]
Yan D, Shi T, Zang Z, Zhou T, Liu Z, Zhang Z, Du J, Leng Y, Tang X. Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification. Small, 2019, 23(15): 1901173
CrossRef Google scholar
[26]
Wang H, Zhang P, Zang Z. High performance CsPbBr3 quantum dots photodetectors by using zinc oxide nanorods arrays as an electron-transport layer. Applied Physics Letters, 2020, 116(16): 162103
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 51602028, 61905026, and 11874091), Jilin Province Science and Technology Development Project (Nos. 20200301065RQ and 20190701024GH), Chinese Academy of Sciences (No. CAS-KLAOT-KF201803), and Changchun University of Science and Technology (No. XJJLG-2017-01).

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(5242 KB)

Accesses

Citations

Detail

Sections
Recommended

/