Frontiers of Optoelectronics >
Experimental Hong–Ou–Mandel interference using two independent heralded single-photon sources
Received date: 30 Sep 2019
Accepted date: 10 Dec 2019
Published date: 15 Sep 2021
Copyright
Hong–Ou–Mandel (HOM) interference is one of the most important experimental phenomena in quantum optics. It has drawn considerable attention with respect to quantum cryptography and quantum communication because of the advent of the measurement device independent (MDI) quantum key distribution (QKD) protocol. Here, we realize HOM interference, having a visibility of approximately 38.1%, using two independent heralded single-photon sources (HSPSs). The HOM interference between two independent HSPSs is a core technology for realizing the long-distance MDI QKD protocol, the quantum coin-tossing protocol, and other quantum cryptography protocols.
Meng YE , Yong WANG , Peng GAO , Likun XU , Guanjin HUANG . Experimental Hong–Ou–Mandel interference using two independent heralded single-photon sources[J]. Frontiers of Optoelectronics, 2021 , 14(3) : 360 -364 . DOI: 10.1007/s12200-020-0986-2
1 |
Gisin N, Ribordy G, Tittel W, Zbinden H. Quantum cryptography. Reviews of Modern Physics, 2002, 74(1): 145–195
|
2 |
Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A. Experimental quantum teleportation. Nature, 1997, 390(6660): 575–579
|
3 |
Briegel H J, Dür W, Cirac J I, Zoller P. Quantum repeaters: the role of imperfect local operations in quantum communication. Physical Review Letters, 1998, 81(26): 5932–5935
|
4 |
Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics. Nature, 2001, 409(6816): 46–52
|
5 |
Hong C K, Ou Z Y, Mandel L. Measurement of subpicosecond time intervals between two photons by interference. Physical Review Letters, 1987, 59(18): 2044–2046
|
6 |
Rarity J G, Tapster P R, Loudon R. Non-classical interference between independent sources. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7(7): S171–S175
|
7 |
Kaltenbaek R, Blauensteiner B, Zukowski M, Aspelmeyer M, Zeilinger A. Experimental interference of independent photons. Physical Review Letters, 2006, 96(24): 240502
|
8 |
Beugnon J, Jones M P, Dingjan J, Darquié B, Messin G, Browaeys A, Grangier P. Quantum interference between two single photons emitted by independently trapped atoms. Nature, 2006, 440(7085): 779–782
|
9 |
Bennett A J, Patel R B, Nicoll C A, Ritchie D A, Shields A J. Interference of dissimilar photon sources. Nature Physics, 2009, 5(10): 715–717
|
10 |
Bennet C H, Brassard G. Quantum Cryptography: Public-Key Distribution and Tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. Bangalore: IEEE Press, 1984, 175–179
|
11 |
Zhang C M, Li M, Huang J Z, Li H W, Li F Y, Wang C, Yin Z Q, Chen W, Han Z F, Treeviriyanupab P, Sripimanwat K. Fast implementation of length-adaptive privacy amplification in quantum key distribution. Chinese Physics B, 2014, 23(9): 090310
|
12 |
Zhang C M, Song X T, Treeviriyanupab P, Li M, Wang C, Li H W, Yin Z Q, Chen W, Han Z F. Delayed error verification in quantum key distribution. Chinese Science Bulletin, 2014, 59(23): 2825–2828
|
13 |
Li M, Patcharapong T, Zhang C M, Yin Z Q, Chen W, Han Z F. Efficient error estimation in quantum key distribution. Chinese Physics B, 2015, 24(1): 010302
|
14 |
Wang S, He D Y, Yin Z Q, Lu F Y, Cui C H, Chen W, Zhou Z, Guo G C, Han Z F. Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system. Physical Review X, 2019, 9(2): 021046
|
15 |
Li Y P, Chen W, Wang F X, Yin Z Q, Zhang L, Liu H, Wang S, He D Y, Zhou Z, Guo G C, Han Z F. Experimental realization of a reference-frame-independent decoy BB84 quantum key distribution based on Sagnac interferometer. Optics Letters, 2019, 44(18): 4523–4526
|
16 |
Lu F Y, Yin Z Q, Cui C H, Fan-Yuan G J, Wang R, Wang S, Chen W, He D Y, Huang W, Xu B J, Guo G C, Han Z F. Improving the performance of twin-field quantum key distribution. Physical Review A, 2019, 100(2): 022306
|
17 |
Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution. Physical Review Letters, 2012, 108(13): 130503
|
18 |
Ferreira da Silva T, Vitoreti D, Xavier G B, do Amaral G C, Temporão G P, von der Weid J P. Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Physical Review A, 2013, 88(5): 052303
|
19 |
Rubenok A, Slater J A, Chan P, Lucio-Martinez I, Tittel W. Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Physical Review Letters, 2013, 111(13): 130501
|
20 |
Liu Y, Chen T Y, Wang L J, Liang H, Shentu G L, Wang J, Cui K, Yin H L, Liu N L, Li L, Ma X, Pelc J S, Fejer M M, Peng C Z, Zhang Q, Pan J W. Experimental measurement-device-independent quantum key distribution. Physical Review Letters, 2013, 111(13): 130502
|
21 |
Tang Z, Liao Z, Xu F, Qi B, Qian L, Lo H K. Experimental demonstration of polarization encoding measurement-device- independent quantum key distribution. Physical Review Letters, 2014, 112(19): 190503
|
22 |
Chen H, An X B, Wu J, Yin Z Q, Wang S, Chen W, Han Z F. Hong–Ou–Mandel interference with two independent weak coherent states. Chinese Physics B, 2016, 25(2): 020305
|
23 |
Wang Q, Chen W, Xavier G, Swillo M, Zhang T, Sauge S, Tengner M, Han Z F, Guo G C, Karlsson A. Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source. Physical Review Letters, 2008, 100(9): 090501
|
24 |
Zukowski M, Zeilinger A, Weinfurter H. Entangling photons radiated by independent pulsed sourcesa. Annals of the New York Academy of Sciences, 1995, 755(1): 91–102
|
/
〈 | 〉 |