Experimental Hong–Ou–Mandel interference using two independent heralded single-photon sources

Meng YE, Yong WANG, Peng GAO, Likun XU, Guanjin HUANG

PDF(546 KB)
PDF(546 KB)
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (3) : 360-364. DOI: 10.1007/s12200-020-0986-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Experimental Hong–Ou–Mandel interference using two independent heralded single-photon sources

Author information +
History +

Abstract

Hong–Ou–Mandel (HOM) interference is one of the most important experimental phenomena in quantum optics. It has drawn considerable attention with respect to quantum cryptography and quantum communication because of the advent of the measurement device independent (MDI) quantum key distribution (QKD) protocol. Here, we realize HOM interference, having a visibility of approximately 38.1%, using two independent heralded single-photon sources (HSPSs). The HOM interference between two independent HSPSs is a core technology for realizing the long-distance MDI QKD protocol, the quantum coin-tossing protocol, and other quantum cryptography protocols.

Graphical abstract

Keywords

Hong–Ou–Mandel (HOM) / quantum cryptography / quantum key distribution (QKD)

Cite this article

Download citation ▾
Meng YE, Yong WANG, Peng GAO, Likun XU, Guanjin HUANG. Experimental Hong–Ou–Mandel interference using two independent heralded single-photon sources. Front. Optoelectron., 2021, 14(3): 360‒364 https://doi.org/10.1007/s12200-020-0986-2

References

[1]
Gisin N, Ribordy G, Tittel W, Zbinden H. Quantum cryptography. Reviews of Modern Physics, 2002, 74(1): 145–195
CrossRef Google scholar
[2]
Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A. Experimental quantum teleportation. Nature, 1997, 390(6660): 575–579
CrossRef Google scholar
[3]
Briegel H J, Dür W, Cirac J I, Zoller P. Quantum repeaters: the role of imperfect local operations in quantum communication. Physical Review Letters, 1998, 81(26): 5932–5935
[4]
Knill E, Laflamme R, Milburn G J. A scheme for efficient quantum computation with linear optics. Nature, 2001, 409(6816): 46–52
CrossRef Pubmed Google scholar
[5]
Hong C K, Ou Z Y, Mandel L. Measurement of subpicosecond time intervals between two photons by interference. Physical Review Letters, 1987, 59(18): 2044–2046
CrossRef Pubmed Google scholar
[6]
Rarity J G, Tapster P R, Loudon R. Non-classical interference between independent sources. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7(7): S171–S175
CrossRef Google scholar
[7]
Kaltenbaek R, Blauensteiner B, Zukowski M, Aspelmeyer M, Zeilinger A. Experimental interference of independent photons. Physical Review Letters, 2006, 96(24): 240502
[8]
Beugnon J, Jones M P, Dingjan J, Darquié B, Messin G, Browaeys A, Grangier P. Quantum interference between two single photons emitted by independently trapped atoms. Nature, 2006, 440(7085): 779–782
CrossRef Pubmed Google scholar
[9]
Bennett A J, Patel R B, Nicoll C A, Ritchie D A, Shields A J. Interference of dissimilar photon sources. Nature Physics, 2009, 5(10): 715–717
CrossRef Google scholar
[10]
Bennet C H, Brassard G. Quantum Cryptography: Public-Key Distribution and Tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. Bangalore: IEEE Press, 1984, 175–179
[11]
Zhang C M, Li M, Huang J Z, Li H W, Li F Y, Wang C, Yin Z Q, Chen W, Han Z F, Treeviriyanupab P, Sripimanwat K. Fast implementation of length-adaptive privacy amplification in quantum key distribution. Chinese Physics B, 2014, 23(9): 090310
CrossRef Google scholar
[12]
Zhang C M, Song X T, Treeviriyanupab P, Li M, Wang C, Li H W, Yin Z Q, Chen W, Han Z F. Delayed error verification in quantum key distribution. Chinese Science Bulletin, 2014, 59(23): 2825–2828
CrossRef Google scholar
[13]
Li M, Patcharapong T, Zhang C M, Yin Z Q, Chen W, Han Z F. Efficient error estimation in quantum key distribution. Chinese Physics B, 2015, 24(1): 010302
CrossRef Google scholar
[14]
Wang S, He D Y, Yin Z Q, Lu F Y, Cui C H, Chen W, Zhou Z, Guo G C, Han Z F. Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system. Physical Review X, 2019, 9(2): 021046
CrossRef Google scholar
[15]
Li Y P, Chen W, Wang F X, Yin Z Q, Zhang L, Liu H, Wang S, He D Y, Zhou Z, Guo G C, Han Z F. Experimental realization of a reference-frame-independent decoy BB84 quantum key distribution based on Sagnac interferometer. Optics Letters, 2019, 44(18): 4523–4526
CrossRef Pubmed Google scholar
[16]
Lu F Y, Yin Z Q, Cui C H, Fan-Yuan G J, Wang R, Wang S, Chen W, He D Y, Huang W, Xu B J, Guo G C, Han Z F. Improving the performance of twin-field quantum key distribution. Physical Review A, 2019, 100(2): 022306
CrossRef Google scholar
[17]
Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution. Physical Review Letters, 2012, 108(13): 130503
CrossRef Pubmed Google scholar
[18]
Ferreira da Silva T, Vitoreti D, Xavier G B, do Amaral G C, Temporão G P, von der Weid J P. Proof-of-principle demonstration of measurement-device-independent quantum key distribution using polarization qubits. Physical Review A, 2013, 88(5): 052303
CrossRef Google scholar
[19]
Rubenok A, Slater J A, Chan P, Lucio-Martinez I, Tittel W. Real-world two-photon interference and proof-of-principle quantum key distribution immune to detector attacks. Physical Review Letters, 2013, 111(13): 130501
CrossRef Pubmed Google scholar
[20]
Liu Y, Chen T Y, Wang L J, Liang H, Shentu G L, Wang J, Cui K, Yin H L, Liu N L, Li L, Ma X, Pelc J S, Fejer M M, Peng C Z, Zhang Q, Pan J W. Experimental measurement-device-independent quantum key distribution. Physical Review Letters, 2013, 111(13): 130502
CrossRef Pubmed Google scholar
[21]
Tang Z, Liao Z, Xu F, Qi B, Qian L, Lo H K. Experimental demonstration of polarization encoding measurement-device- independent quantum key distribution. Physical Review Letters, 2014, 112(19): 190503
CrossRef Pubmed Google scholar
[22]
Chen H, An X B, Wu J, Yin Z Q, Wang S, Chen W, Han Z F. Hong–Ou–Mandel interference with two independent weak coherent states. Chinese Physics B, 2016, 25(2): 020305
CrossRef Google scholar
[23]
Wang Q, Chen W, Xavier G, Swillo M, Zhang T, Sauge S, Tengner M, Han Z F, Guo G C, Karlsson A. Experimental decoy-state quantum key distribution with a sub-poissionian heralded single-photon source. Physical Review Letters, 2008, 100(9): 090501
CrossRef Pubmed Google scholar
[24]
Zukowski M, Zeilinger A, Weinfurter H. Entangling photons radiated by independent pulsed sourcesa. Annals of the New York Academy of Sciences, 1995, 755(1): 91–102
CrossRef Google scholar

RIGHTS & PERMISSIONS

2020 Higher Education Press
AI Summary AI Mindmap
PDF(546 KB)

Accesses

Citations

Detail

Sections
Recommended

/