Frontiers of Optoelectronics >
Polarization-sensitive and active controllable electromagnetically induced transparency in U-shaped terahertz metamaterials
Received date: 04 Apr 2019
Accepted date: 18 Jun 2019
Published date: 15 Jun 2021
Copyright
Electromagnetically induced transparency (EIT) phenomenon is observed in simple metamaterial which consists of concentric double U-shaped resonators (USRs). The numerical and theoretical analysis reveals that EIT arises from the bright-bright mode coupling. The transmission spectra at different polarization angle of incident light shows that EIT transparency window is polarization sensitive. More interestingly, Fano resonance appears in the transmission spectrum at certain polarization angles. The sharp and asymmetric Fano lineshape is high valuable for sensing. The performance of sensor is investigated and the sensitivity is high up to 327 GHz/RIU. Furthermore, active control of EIT window is realized by incorporating photosensitive silicon. The proposed USR structure is simple and compact, which may find significant applications in tunable integrated devices such as biosensor, filters, and THz modulators.
Kun REN , Ying ZHANG , Xiaobin REN , Yumeng HE , Qun HAN . Polarization-sensitive and active controllable electromagnetically induced transparency in U-shaped terahertz metamaterials[J]. Frontiers of Optoelectronics, 2021 , 14(2) : 221 -228 . DOI: 10.1007/s12200-019-0921-6
1 |
Harris S E. Electromagnetically induced transparency. Physics Today, 1997, 50(7): 36–42
|
2 |
Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: optics in coherent media. Reviews of Modern Physics, 2005, 77(2): 633–673
|
3 |
Vardi Y, Cohen-Hoshen E, Shalem G, Bar-Joseph I. Fano resonance in an electrically driven plasmonic device. Nano Letters, 2016, 16(1): 748–752
|
4 |
Savo S, Casse B D F, Lu W T, Sridhar S. Observation of slow-light in a metamaterials waveguide at microwave frequencies. Applied Physics Letters, 2011, 98(17): 171907
|
5 |
Neutens P, Lagae L, Borghs G, Van Dorpe P. Plasmon filters and resonators in metal-insulator-metal waveguides. Optics Express, 2012, 20(4): 3408–3423
|
6 |
Lu H, Liu X, Wang L, Gong Y, Mao D. Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Optics Express, 2011, 19(4): 2910–2915
|
7 |
Min C, Veronis G. Absorption switches in metal-dielectric-metal plasmonic waveguides. Optics Express, 2009, 17(13): 10757–10766
|
8 |
Wang J, Yuan B, Fan C, He J, Ding P, Xue Q, Liang E. A novel planar metamaterial design for electromagnetically induced transparency and slow light. Optics Express, 2013, 21(21): 25159–25166
|
9 |
Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79
|
10 |
Ouedraogo R O, Rothwell E J, Diaz A R, Fuchi K, Temme A. Miniaturization of patch antennas using a metamaterial-inspired technique. IEEE Transactions on Antennas and Propagation, 2012, 60(5): 2175–2182
|
11 |
Dong Y D, Toyao H, Itoh T. Compact circularly-polarized patch antenna loaded with metamaterial structures. IEEE Transactions on Antennas and Propagation, 2011, 59(11): 4329–4333
|
12 |
Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969
|
13 |
Ergin T, Stenger N, Brenner P, Pendry J B, Wegener M. Three-dimensional invisibility cloak at optical wavelengths. Science, 2010, 328(5976): 337–339
|
14 |
Zhang S, Xia C, Fang N. Broadband acoustic cloak for ultrasound waves. Physical Review Letters, 2011, 106(2): 024301
|
15 |
Meng H Y, Xue X X, Lin Q, Liu G D, Zhai X, Wang L L. Tunable and multi-channel perfect absorber based on graphene at mid-infrared region. Applied Physics Express, 2018, 11(5): 052002
|
16 |
Xia S X, Zhai X, Huang Y, Liu J Q, Wang L L, Wen S C. Multi-band perfect plasmonic absorptions using rectangular graphene gratings. Optics Letters, 2017, 42(15): 3052–3055
|
17 |
Meng H, Wang L, Liu G, Xue X, Lin Q, Zhai X. Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region. Applied Optics, 2017, 56(21): 6022–6027
|
18 |
Xia S X, Zhai X, Wang L L, Sun B, Liu J Q, Wen S C. Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers. Optics Express, 2016, 24(16): 17886–17899
|
19 |
Xia S X, Zhai X, Wang L L, Wen S C. Plasmonically induced transparency in double-layered graphene nanoribbons. Photonics Research, 2018, 6(7): 692–702
|
20 |
Zhang S, Genov D A, Wang Y, Liu M, Zhang X. Plasmon-induced transparency in metamaterials. Physical Review Letters, 2008, 101(4): 047401
|
21 |
Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Materials, 2009, 8(9): 758–762
|
22 |
Zhu Y, Hu X, Yang H, Gong Q. On-chip plasmon-induced transparency based on plasmonic coupled nanocavities. Scientific Reports, 2014, 4(1): 3752
|
23 |
Lee S, Park Q H. Dynamic coupling of plasmonic resonators. Scientific Reports, 2016, 6(1): 21989
|
24 |
Yang Y M, Kravchenko I I, Briggs D P, Valentine J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nature Communications, 2014, 5: 5753
|
25 |
Xiao S Y, Wang T, Liu T T, Yan X C, Li Z, Xu C. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon, 2018, 126: 271–278
|
26 |
Zhang H Y, Cao Y Y, Liu Y Z, Li Y, Zhang Y P. A novel graphene metamaterial design for tunable terahertz plasmon induced transparency by two bright mode coupling. Optics Communications, 2017, 391: 9–15
|
27 |
Hu S, Liu D, Yang H L. Electromagnetically induced transparency in an integrated metasurface based on bright–dark–bright mode coupling. Journal of Physics D, Applied Physics, 2019, 52(17): 175305
|
28 |
Ren X, Ren K, Ming C. Self-reference refractive index sensor based on independently controlled double resonances in side-coupled U-shaped resonators. Sensors (Basel), 2018, 18(5): 1376
|
29 |
Singh R, Al-Naib I A I, Koch M, Zhang W. Sharp Fano resonances in THz metamaterials. Optics Express, 2011, 19(7): 6312–6319
|
30 |
Singh R, Azad A K, Jia Q X, Taylor A J, Chen H T. Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates. Optics Letters, 2011, 36(7): 1230–1232
|
31 |
Cortie M B, Dowd A, Harris N, Ford M J. Core-shell nanoparticles with self-regulating plasmonic functionality. Physical Review B, 2007, 75(11): 113405
|
32 |
Wang Y, Leng Y B, Wang L, Dong L H, Liu S R, Wang J, Sun Y J. Broadband tunable electromagnetically induced transparency analogue metamaterials based on graphene in terahertz band. Applied Physics Express, 2018, 11(6): 062001
|
33 |
Xu Z X, Liu S Y, Li S L, Yin X X. Analog of electromagnetically induced transparency based on magnetic plasmonic artificial molecules with symmetric and antisymmetric states. Physical Review B, 2019, 99(4): 041104
|
34 |
Ren K, Ren X, He Y, Han Q. Magnetic-field sensor with self-reference characteristic based on a magnetic fluid and independent plasmonic dual resonances. Beilstein Journal of Nanotechnology, 2019, 10: 247–255
|
35 |
Li Q M, Zhang B, Xiong W, Shen J L. Modulation of the resonance frequency in double-split ring terahertz metamaterials. Optics Communications, 2014, 323: 162–166
|
36 |
Pan W, Yan Y J, Ma Y, Shen D J. A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance. Optics Communications, 2019, 431: 115–119
|
37 |
Huang H L, Xia H, Guo Z B, Li H J, Xie D. Polarization-insensitive and tunable plasmon induced transparency in a graphene-based terahertz metamaterial. Optics Communications, 2018, 424: 163–169
|
38 |
Liu C J, Huang Y Y, Yao Z H, Yu L L, Jin Y P, Xu X L. Giant angular dependence of electromagnetic induced transparency in THz metamaterials. EPL, 2018, 121(4): 44004
|
39 |
Manjappa M, Srivastava Y K, Cong L, Al-Naib I, Singh R. Active photoswitching of sharp Fano resonances in THz metadevices. Advanced Materials, 2017, 29(3): 1603355
|
40 |
Ren X, Ren K, Cai Y. Tunable compact nanosensor based on Fano resonance in a plasmonic waveguide system. Applied Optics, 2017, 56(31): H1–H9
|
/
〈 | 〉 |