Polarization-sensitive and active controllable electromagnetically induced transparency in U-shaped terahertz metamaterials

Kun REN, Ying ZHANG, Xiaobin REN, Yumeng HE, Qun HAN

PDF(1567 KB)
PDF(1567 KB)
Front. Optoelectron. ›› 2021, Vol. 14 ›› Issue (2) : 221-228. DOI: 10.1007/s12200-019-0921-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Polarization-sensitive and active controllable electromagnetically induced transparency in U-shaped terahertz metamaterials

Author information +
History +

Abstract

Electromagnetically induced transparency (EIT) phenomenon is observed in simple metamaterial which consists of concentric double U-shaped resonators (USRs). The numerical and theoretical analysis reveals that EIT arises from the bright-bright mode coupling. The transmission spectra at different polarization angle of incident light shows that EIT transparency window is polarization sensitive. More interestingly, Fano resonance appears in the transmission spectrum at certain polarization angles. The sharp and asymmetric Fano lineshape is high valuable for sensing. The performance of sensor is investigated and the sensitivity is high up to 327 GHz/RIU. Furthermore, active control of EIT window is realized by incorporating photosensitive silicon. The proposed USR structure is simple and compact, which may find significant applications in tunable integrated devices such as biosensor, filters, and THz modulators.

Graphical abstract

Keywords

electromagnetically induced transparency (EIT) / metamaterial / polarization-sensitive / active optical devices / sensor

Cite this article

Download citation ▾
Kun REN, Ying ZHANG, Xiaobin REN, Yumeng HE, Qun HAN. Polarization-sensitive and active controllable electromagnetically induced transparency in U-shaped terahertz metamaterials. Front. Optoelectron., 2021, 14(2): 221‒228 https://doi.org/10.1007/s12200-019-0921-6

References

[1]
Harris S E. Electromagnetically induced transparency. Physics Today, 1997, 50(7): 36–42
CrossRef Google scholar
[2]
Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: optics in coherent media. Reviews of Modern Physics, 2005, 77(2): 633–673
CrossRef Google scholar
[3]
Vardi Y, Cohen-Hoshen E, Shalem G, Bar-Joseph I. Fano resonance in an electrically driven plasmonic device. Nano Letters, 2016, 16(1): 748–752
CrossRef Pubmed Google scholar
[4]
Savo S, Casse B D F, Lu W T, Sridhar S. Observation of slow-light in a metamaterials waveguide at microwave frequencies. Applied Physics Letters, 2011, 98(17): 171907
CrossRef Google scholar
[5]
Neutens P, Lagae L, Borghs G, Van Dorpe P. Plasmon filters and resonators in metal-insulator-metal waveguides. Optics Express, 2012, 20(4): 3408–3423
CrossRef Pubmed Google scholar
[6]
Lu H, Liu X, Wang L, Gong Y, Mao D. Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Optics Express, 2011, 19(4): 2910–2915
CrossRef Pubmed Google scholar
[7]
Min C, Veronis G. Absorption switches in metal-dielectric-metal plasmonic waveguides. Optics Express, 2009, 17(13): 10757–10766
CrossRef Pubmed Google scholar
[8]
Wang J, Yuan B, Fan C, He J, Ding P, Xue Q, Liang E. A novel planar metamaterial design for electromagnetically induced transparency and slow light. Optics Express, 2013, 21(21): 25159–25166
CrossRef Pubmed Google scholar
[9]
Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79
CrossRef Pubmed Google scholar
[10]
Ouedraogo R O, Rothwell E J, Diaz A R, Fuchi K, Temme A. Miniaturization of patch antennas using a metamaterial-inspired technique. IEEE Transactions on Antennas and Propagation, 2012, 60(5): 2175–2182
CrossRef Google scholar
[11]
Dong Y D, Toyao H, Itoh T. Compact circularly-polarized patch antenna loaded with metamaterial structures. IEEE Transactions on Antennas and Propagation, 2011, 59(11): 4329–4333
CrossRef Google scholar
[12]
Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969
CrossRef Pubmed Google scholar
[13]
Ergin T, Stenger N, Brenner P, Pendry J B, Wegener M. Three-dimensional invisibility cloak at optical wavelengths. Science, 2010, 328(5976): 337–339
CrossRef Pubmed Google scholar
[14]
Zhang S, Xia C, Fang N. Broadband acoustic cloak for ultrasound waves. Physical Review Letters, 2011, 106(2): 024301
CrossRef Pubmed Google scholar
[15]
Meng H Y, Xue X X, Lin Q, Liu G D, Zhai X, Wang L L. Tunable and multi-channel perfect absorber based on graphene at mid-infrared region. Applied Physics Express, 2018, 11(5): 052002
CrossRef Google scholar
[16]
Xia S X, Zhai X, Huang Y, Liu J Q, Wang L L, Wen S C. Multi-band perfect plasmonic absorptions using rectangular graphene gratings. Optics Letters, 2017, 42(15): 3052–3055
CrossRef Pubmed Google scholar
[17]
Meng H, Wang L, Liu G, Xue X, Lin Q, Zhai X. Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region. Applied Optics, 2017, 56(21): 6022–6027
CrossRef Pubmed Google scholar
[18]
Xia S X, Zhai X, Wang L L, Sun B, Liu J Q, Wen S C. Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers. Optics Express, 2016, 24(16): 17886–17899
CrossRef Pubmed Google scholar
[19]
Xia S X, Zhai X, Wang L L, Wen S C. Plasmonically induced transparency in double-layered graphene nanoribbons. Photonics Research, 2018, 6(7): 692–702
CrossRef Google scholar
[20]
Zhang S, Genov D A, Wang Y, Liu M, Zhang X. Plasmon-induced transparency in metamaterials. Physical Review Letters, 2008, 101(4): 047401
CrossRef Pubmed Google scholar
[21]
Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Materials, 2009, 8(9): 758–762
CrossRef Pubmed Google scholar
[22]
Zhu Y, Hu X, Yang H, Gong Q. On-chip plasmon-induced transparency based on plasmonic coupled nanocavities. Scientific Reports, 2014, 4(1): 3752
CrossRef Pubmed Google scholar
[23]
Lee S, Park Q H. Dynamic coupling of plasmonic resonators. Scientific Reports, 2016, 6(1): 21989
CrossRef Pubmed Google scholar
[24]
Yang Y M, Kravchenko I I, Briggs D P, Valentine J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nature Communications, 2014, 5: 5753
[25]
Xiao S Y, Wang T, Liu T T, Yan X C, Li Z, Xu C. Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials. Carbon, 2018, 126: 271–278
CrossRef Google scholar
[26]
Zhang H Y, Cao Y Y, Liu Y Z, Li Y, Zhang Y P. A novel graphene metamaterial design for tunable terahertz plasmon induced transparency by two bright mode coupling. Optics Communications, 2017, 391: 9–15
CrossRef Google scholar
[27]
Hu S, Liu D, Yang H L. Electromagnetically induced transparency in an integrated metasurface based on bright–dark–bright mode coupling. Journal of Physics D, Applied Physics, 2019, 52(17): 175305
CrossRef Google scholar
[28]
Ren X, Ren K, Ming C. Self-reference refractive index sensor based on independently controlled double resonances in side-coupled U-shaped resonators. Sensors (Basel), 2018, 18(5): 1376
CrossRef Pubmed Google scholar
[29]
Singh R, Al-Naib I A I, Koch M, Zhang W. Sharp Fano resonances in THz metamaterials. Optics Express, 2011, 19(7): 6312–6319
CrossRef Pubmed Google scholar
[30]
Singh R, Azad A K, Jia Q X, Taylor A J, Chen H T. Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates. Optics Letters, 2011, 36(7): 1230–1232
CrossRef Pubmed Google scholar
[31]
Cortie M B, Dowd A, Harris N, Ford M J. Core-shell nanoparticles with self-regulating plasmonic functionality. Physical Review B, 2007, 75(11): 113405
CrossRef Google scholar
[32]
Wang Y, Leng Y B, Wang L, Dong L H, Liu S R, Wang J, Sun Y J. Broadband tunable electromagnetically induced transparency analogue metamaterials based on graphene in terahertz band. Applied Physics Express, 2018, 11(6): 062001
CrossRef Google scholar
[33]
Xu Z X, Liu S Y, Li S L, Yin X X. Analog of electromagnetically induced transparency based on magnetic plasmonic artificial molecules with symmetric and antisymmetric states. Physical Review B, 2019, 99(4): 041104
CrossRef Google scholar
[34]
Ren K, Ren X, He Y, Han Q. Magnetic-field sensor with self-reference characteristic based on a magnetic fluid and independent plasmonic dual resonances. Beilstein Journal of Nanotechnology, 2019, 10: 247–255
CrossRef Pubmed Google scholar
[35]
Li Q M, Zhang B, Xiong W, Shen J L. Modulation of the resonance frequency in double-split ring terahertz metamaterials. Optics Communications, 2014, 323: 162–166
CrossRef Google scholar
[36]
Pan W, Yan Y J, Ma Y, Shen D J. A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance. Optics Communications, 2019, 431: 115–119
CrossRef Google scholar
[37]
Huang H L, Xia H, Guo Z B, Li H J, Xie D. Polarization-insensitive and tunable plasmon induced transparency in a graphene-based terahertz metamaterial. Optics Communications, 2018, 424: 163–169
CrossRef Google scholar
[38]
Liu C J, Huang Y Y, Yao Z H, Yu L L, Jin Y P, Xu X L. Giant angular dependence of electromagnetic induced transparency in THz metamaterials. EPL, 2018, 121(4): 44004
CrossRef Google scholar
[39]
Manjappa M, Srivastava Y K, Cong L, Al-Naib I, Singh R. Active photoswitching of sharp Fano resonances in THz metadevices. Advanced Materials, 2017, 29(3): 1603355
CrossRef Pubmed Google scholar
[40]
Ren X, Ren K, Cai Y. Tunable compact nanosensor based on Fano resonance in a plasmonic waveguide system. Applied Optics, 2017, 56(31): H1–H9
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11104200) and the Natural Science Foundation of Tianjin (No. 18JCYBJC17000).

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(1567 KB)

Accesses

Citations

Detail

Sections
Recommended

/