Frontiers of Optoelectronics >
Surface-enhanced fluorescence from copper nanoparticles on silicon nanowires
Received date: 18 Oct 2010
Accepted date: 30 Dec 2010
Published date: 05 Mar 2011
Copyright
A method to enhance surface plasmon coupled fluorescence from copper nanoparticles on silicon nanowires is presented. Owing to resonant plasmons oscillation on the surface of Cu/Si nanostructure, the fluorescence peaks of several lanthanide ions (praseodymium ions, Pr3+, neodymium ions Nd3+, holmium ions Ho3+, and erbium ions Er3+) were markedly enhanced with the enhancement of maximal 2 orders of magnitude, which was larger than that caused by unsupported Cu nanoparticles. These results might be explained by the local field overlap originated from the closed and fixed copper nanoparticles on silicon nanowires.
Shujuan ZHUO , Mingwang SHAO , Liang CHENG , Ronghui QUE , Dorthy Duo Duo MA , Shuit Tong LEE . Surface-enhanced fluorescence from copper nanoparticles on silicon nanowires[J]. Frontiers of Optoelectronics, 2011 , 4(1) : 114 -120 . DOI: 10.1007/s12200-011-0152-y
1 |
Chance R R, Prock A, Silbey R. Molecular fluorescence and energy transfer near interfaces. Advances in Chemical Physics, 1978, 37: 1-65
|
2 |
Ray K, Badugu R, Lakowicz J R. Metal-enhanced fluorescence from CdTe nanocrystals: a single-molecule fluorescence study. Journal of the American Chemical Society, 2006, 128(28): 8998-8999
|
3 |
Lakowicz J R. Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics, 2006, 1(1): 5-33
|
4 |
Aslan K, Holley P, Geddes C D. Metal-enhanced fluorescence from silver nanoparticle-deposited polycarbonate substrates. Journal of Materials Chemistry, 2006, 16(27): 2846-28525.
|
5 |
Ray K, Chowdhury M H, Lakowicz J R. Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region. Analytical Chemistry, 2007, 79(17): 6480-6487
|
6 |
Mertens H, Koenderink A F, Polman A. Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(11): 115123-1-115123-12
|
7 |
Lakowicz J R. Radiative decay engineering: biophysical and biomedical applications. Analytical Biochemistry, 2001, 298(1): 1-24
|
8 |
Zhang J, Fu Y, Lakowicz J R. Emission behavior of fluorescently labeled silver nanoshell: enhanced self-quenching by netal nanostructure. Journal of Physical Chemistry C, 2007, 111(5): 1955-1961
|
9 |
Lakowicz J R. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Analytical Biochemistry, 2005, 337(2): 171-194
|
10 |
Bjerneld E J, Földes-Papp Z, Käll M, Rigler R. Single-molecule surface-enhanced raman and fluorescence correlation spectroscopy of horseradish peroxidase. Journal of Physical Chemistry B, 2002, 106(6): 1213-1218
|
11 |
Aslan K, Lakowicz J R, Geddes C D. Rapid deposition of triangular silver nanoplates on planar surfaces: application to metal-enhanced fluorescence. The Journal of Physical Chemistry B, 2005, 109(13): 6247-6251
|
12 |
Zhang Y X, Aslan K, Previte M J R, Geddes C D. Metal-enhanced fluorescence from copper substrates. Applied Physics Letters, 2007, 90(17): 173116
|
13 |
Baluschev S, Yu F, Miteva T, Ahl S, Yasuda A, Nelles G, Knoll W, Wegner G. Metal-enhanced up-conversion fluorescence: effective triplet-triplet annihilation near silver surface. Nano Letters, 2005, 5(12): 2482-2484
|
14 |
Zhuo S J, Shao M W, Cheng L, Que R H, Zhuo S J, Ma D D D, Lee S T. Surface-enhanced fluorescence of praseodymium ions (Pr3+) on silver/silicon nanostructure. Applied Physics Letters, 2010, 96(10): 103108-1-103108-3
|
15 |
Ahrens B, Eisenschmidt C, Johnson J A, Miclea P T, Schweizer S. Structural and optical investigations of Nd-doped fluorozirconate-based glass ceramics for enhanced upconverted fluorescence. Applied Physics Letters, 2008, 92(6): 061905
|
16 |
Aisaka T, Fujii M, Hayashi S. Enhancement of upconversion luminescence of Er doped Al2O3 films by Ag island films. Applied Physics Letters, 2008, 92(13): 132105
|
17 |
Capobianco J A, Boyer J C, Vetrone F, Speghini A, Bettinelli M. Optical spectroscopy and upconversion studies of Ho3+-doped Bulk and Nanocrystalline Y2O3. Chemistry of Materials, 2002, 14(7): 2915-2921
|
18 |
Bünzli J C G. Benefiting from the unique properties of lanthanide ions. Accounts of Chemical Research, 2006, 39(1): 53-61
|
19 |
Tissue B M. Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts. Chemistry of Materials, 1998, 10(10): 2837-2845
|
20 |
Hasegawa Y, Wada Y, Yanagida S. Strategies for the design of luminescent lanthanide(III) complexes and their photonic applications. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2004, 5(3): 183-202
|
21 |
Zhang J, Malicka J, Gryczynski I, Lakowicz J R. Surface-enhanced fluorescence of fluorescein-labeled oligonucleotides capped on silver nanoparticles. Journal of Physical Chemistry B, 2005, 109(16): 7643-7648
|
22 |
Shao M W, Shan Y Y, Wong N B, Lee S T. Silicon nanowire sensors for bioanalytical application: glucose and hydrogen peroxide detection. Advanced Functional Materials, 2005, 15(9): 1478-1482
|
23 |
Lisiecki I, Pileni M P. Synthesis of copper metallic clusters using reverse micelles as microreactors. Journal of the American Chemical Society, 1993, 115(10): 3887-3896
|
24 |
Shao M W, Cheng L, Zhang X H, Ma D D D, Lee S T. Excellent photocatalysis of HF-treated silicon nanowires. Journal of the American Chemical Society, 2009, 131(49): 17738-17739
|
25 |
Tsang C H A, Liu Y, Kang Z H, Ma D D D, Wong N B, Lee S T. Metal (Cu, Au)-modified silicon nanowires for high-selectivity solvent-free hydrocarbon oxidation in air. Chemical Communications, 2009, (39): 5829-5831
|
26 |
Gunnarsson L, Bjerneld E J, Xu H, Petronis S, Kasemo B, Käll M. Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Applied Physics Letters, 2001, 78(6): 802-804
|
/
〈 | 〉 |