Surface-enhanced fluorescence from copper nanoparticles on silicon nanowires

Shujuan ZHUO, Mingwang SHAO, Liang CHENG, Ronghui QUE, Dorthy Duo Duo MA, Shuit Tong LEE

PDF(584 KB)
PDF(584 KB)
Front. Optoelectron. ›› 2011, Vol. 4 ›› Issue (1) : 114-120. DOI: 10.1007/s12200-011-0152-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Surface-enhanced fluorescence from copper nanoparticles on silicon nanowires

Author information +
History +

Abstract

A method to enhance surface plasmon coupled fluorescence from copper nanoparticles on silicon nanowires is presented. Owing to resonant plasmons oscillation on the surface of Cu/Si nanostructure, the fluorescence peaks of several lanthanide ions (praseodymium ions, Pr3+, neodymium ions Nd3+, holmium ions Ho3+, and erbium ions Er3+) were markedly enhanced with the enhancement of maximal 2 orders of magnitude, which was larger than that caused by unsupported Cu nanoparticles. These results might be explained by the local field overlap originated from the closed and fixed copper nanoparticles on silicon nanowires.

Keywords

Cu/Si nanostructure / surface-enhanced fluorescence / lanthanide ions / resonant plasmons oscillation

Cite this article

Download citation ▾
Shujuan ZHUO, Mingwang SHAO, Liang CHENG, Ronghui QUE, Dorthy Duo Duo MA, Shuit Tong LEE. Surface-enhanced fluorescence from copper nanoparticles on silicon nanowires. Front Optoelec Chin, 2011, 4(1): 114‒120 https://doi.org/10.1007/s12200-011-0152-y

References

[1]
Chance R R, Prock A, Silbey R. Molecular fluorescence and energy transfer near interfaces. Advances in Chemical Physics, 1978, 37: 1-65
CrossRef Google scholar
[2]
Ray K, Badugu R, Lakowicz J R. Metal-enhanced fluorescence from CdTe nanocrystals: a single-molecule fluorescence study. Journal of the American Chemical Society, 2006, 128(28): 8998-8999
CrossRef Google scholar
[3]
Lakowicz J R. Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics, 2006, 1(1): 5-33
CrossRef Google scholar
[4]
Aslan K, Holley P, Geddes C D. Metal-enhanced fluorescence from silver nanoparticle-deposited polycarbonate substrates. Journal of Materials Chemistry, 2006, 16(27): 2846-28525.
CrossRef Google scholar
[5]
Ray K, Chowdhury M H, Lakowicz J R. Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region. Analytical Chemistry, 2007, 79(17): 6480-6487
CrossRef Google scholar
[6]
Mertens H, Koenderink A F, Polman A. Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(11): 115123-1-115123-12
[7]
Lakowicz J R. Radiative decay engineering: biophysical and biomedical applications. Analytical Biochemistry, 2001, 298(1): 1-24
CrossRef Google scholar
[8]
Zhang J, Fu Y, Lakowicz J R. Emission behavior of fluorescently labeled silver nanoshell: enhanced self-quenching by netal nanostructure. Journal of Physical Chemistry C, 2007, 111(5): 1955-1961
[9]
Lakowicz J R. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Analytical Biochemistry, 2005, 337(2): 171-194
CrossRef Google scholar
[10]
Bjerneld E J, Földes-Papp Z, Käll M, Rigler R. Single-molecule surface-enhanced raman and fluorescence correlation spectroscopy of horseradish peroxidase. Journal of Physical Chemistry B, 2002, 106(6): 1213-1218
CrossRef Google scholar
[11]
Aslan K, Lakowicz J R, Geddes C D. Rapid deposition of triangular silver nanoplates on planar surfaces: application to metal-enhanced fluorescence. The Journal of Physical Chemistry B, 2005, 109(13): 6247-6251
CrossRef Google scholar
[12]
Zhang Y X, Aslan K, Previte M J R, Geddes C D. Metal-enhanced fluorescence from copper substrates. Applied Physics Letters, 2007, 90(17): 173116
CrossRef Google scholar
[13]
Baluschev S, Yu F, Miteva T, Ahl S, Yasuda A, Nelles G, Knoll W, Wegner G. Metal-enhanced up-conversion fluorescence: effective triplet-triplet annihilation near silver surface. Nano Letters, 2005, 5(12): 2482-2484
CrossRef Google scholar
[14]
Zhuo S J, Shao M W, Cheng L, Que R H, Zhuo S J, Ma D D D, Lee S T. Surface-enhanced fluorescence of praseodymium ions (Pr3+) on silver/silicon nanostructure. Applied Physics Letters, 2010, 96(10): 103108-1-103108-3
[15]
Ahrens B, Eisenschmidt C, Johnson J A, Miclea P T, Schweizer S. Structural and optical investigations of Nd-doped fluorozirconate-based glass ceramics for enhanced upconverted fluorescence. Applied Physics Letters, 2008, 92(6): 061905
CrossRef Google scholar
[16]
Aisaka T, Fujii M, Hayashi S. Enhancement of upconversion luminescence of Er doped Al2O3 films by Ag island films. Applied Physics Letters, 2008, 92(13): 132105
CrossRef Google scholar
[17]
Capobianco J A, Boyer J C, Vetrone F, Speghini A, Bettinelli M. Optical spectroscopy and upconversion studies of Ho3+-doped Bulk and Nanocrystalline Y2O3. Chemistry of Materials, 2002, 14(7): 2915-2921
CrossRef Google scholar
[18]
Bünzli J C G. Benefiting from the unique properties of lanthanide ions. Accounts of Chemical Research, 2006, 39(1): 53-61
CrossRef Google scholar
[19]
Tissue B M. Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts. Chemistry of Materials, 1998, 10(10): 2837-2845
CrossRef Google scholar
[20]
Hasegawa Y, Wada Y, Yanagida S. Strategies for the design of luminescent lanthanide(III) complexes and their photonic applications. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2004, 5(3): 183-202
CrossRef Google scholar
[21]
Zhang J, Malicka J, Gryczynski I, Lakowicz J R. Surface-enhanced fluorescence of fluorescein-labeled oligonucleotides capped on silver nanoparticles. Journal of Physical Chemistry B, 2005, 109(16): 7643-7648
CrossRef Google scholar
[22]
Shao M W, Shan Y Y, Wong N B, Lee S T. Silicon nanowire sensors for bioanalytical application: glucose and hydrogen peroxide detection. Advanced Functional Materials, 2005, 15(9): 1478-1482
CrossRef Google scholar
[23]
Lisiecki I, Pileni M P. Synthesis of copper metallic clusters using reverse micelles as microreactors. Journal of the American Chemical Society, 1993, 115(10): 3887-3896
CrossRef Google scholar
[24]
Shao M W, Cheng L, Zhang X H, Ma D D D, Lee S T. Excellent photocatalysis of HF-treated silicon nanowires. Journal of the American Chemical Society, 2009, 131(49): 17738-17739
CrossRef Google scholar
[25]
Tsang C H A, Liu Y, Kang Z H, Ma D D D, Wong N B, Lee S T. Metal (Cu, Au)-modified silicon nanowires for high-selectivity solvent-free hydrocarbon oxidation in air. Chemical Communications, 2009, (39): 5829-5831
CrossRef Google scholar
[26]
Gunnarsson L, Bjerneld E J, Xu H, Petronis S, Kasemo B, Käll M. Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Applied Physics Letters, 2001, 78(6): 802-804
CrossRef Google scholar

Acknowledgment

The work was supported by the National Basic Research Program of China (No. 2006CB933000).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(584 KB)

Accesses

Citations

Detail

Sections
Recommended

/