Surface-enhanced fluorescence from copper nanoparticles on silicon nanowires
Shujuan ZHUO, Mingwang SHAO, Liang CHENG, Ronghui QUE, Dorthy Duo Duo MA, Shuit Tong LEE
Surface-enhanced fluorescence from copper nanoparticles on silicon nanowires
A method to enhance surface plasmon coupled fluorescence from copper nanoparticles on silicon nanowires is presented. Owing to resonant plasmons oscillation on the surface of Cu/Si nanostructure, the fluorescence peaks of several lanthanide ions (praseodymium ions, Pr3+, neodymium ions Nd3+, holmium ions Ho3+, and erbium ions Er3+) were markedly enhanced with the enhancement of maximal 2 orders of magnitude, which was larger than that caused by unsupported Cu nanoparticles. These results might be explained by the local field overlap originated from the closed and fixed copper nanoparticles on silicon nanowires.
Cu/Si nanostructure / surface-enhanced fluorescence / lanthanide ions / resonant plasmons oscillation
[1] |
Chance R R, Prock A, Silbey R. Molecular fluorescence and energy transfer near interfaces. Advances in Chemical Physics, 1978, 37: 1-65
CrossRef
Google scholar
|
[2] |
Ray K, Badugu R, Lakowicz J R. Metal-enhanced fluorescence from CdTe nanocrystals: a single-molecule fluorescence study. Journal of the American Chemical Society, 2006, 128(28): 8998-8999
CrossRef
Google scholar
|
[3] |
Lakowicz J R. Plasmonics in biology and plasmon-controlled fluorescence. Plasmonics, 2006, 1(1): 5-33
CrossRef
Google scholar
|
[4] |
Aslan K, Holley P, Geddes C D. Metal-enhanced fluorescence from silver nanoparticle-deposited polycarbonate substrates. Journal of Materials Chemistry, 2006, 16(27): 2846-28525.
CrossRef
Google scholar
|
[5] |
Ray K, Chowdhury M H, Lakowicz J R. Aluminum nanostructured films as substrates for enhanced fluorescence in the ultraviolet-blue spectral region. Analytical Chemistry, 2007, 79(17): 6480-6487
CrossRef
Google scholar
|
[6] |
Mertens H, Koenderink A F, Polman A. Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(11): 115123-1-115123-12
|
[7] |
Lakowicz J R. Radiative decay engineering: biophysical and biomedical applications. Analytical Biochemistry, 2001, 298(1): 1-24
CrossRef
Google scholar
|
[8] |
Zhang J, Fu Y, Lakowicz J R. Emission behavior of fluorescently labeled silver nanoshell: enhanced self-quenching by netal nanostructure. Journal of Physical Chemistry C, 2007, 111(5): 1955-1961
|
[9] |
Lakowicz J R. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Analytical Biochemistry, 2005, 337(2): 171-194
CrossRef
Google scholar
|
[10] |
Bjerneld E J, Földes-Papp Z, Käll M, Rigler R. Single-molecule surface-enhanced raman and fluorescence correlation spectroscopy of horseradish peroxidase. Journal of Physical Chemistry B, 2002, 106(6): 1213-1218
CrossRef
Google scholar
|
[11] |
Aslan K, Lakowicz J R, Geddes C D. Rapid deposition of triangular silver nanoplates on planar surfaces: application to metal-enhanced fluorescence. The Journal of Physical Chemistry B, 2005, 109(13): 6247-6251
CrossRef
Google scholar
|
[12] |
Zhang Y X, Aslan K, Previte M J R, Geddes C D. Metal-enhanced fluorescence from copper substrates. Applied Physics Letters, 2007, 90(17): 173116
CrossRef
Google scholar
|
[13] |
Baluschev S, Yu F, Miteva T, Ahl S, Yasuda A, Nelles G, Knoll W, Wegner G. Metal-enhanced up-conversion fluorescence: effective triplet-triplet annihilation near silver surface. Nano Letters, 2005, 5(12): 2482-2484
CrossRef
Google scholar
|
[14] |
Zhuo S J, Shao M W, Cheng L, Que R H, Zhuo S J, Ma D D D, Lee S T. Surface-enhanced fluorescence of praseodymium ions (Pr3+) on silver/silicon nanostructure. Applied Physics Letters, 2010, 96(10): 103108-1-103108-3
|
[15] |
Ahrens B, Eisenschmidt C, Johnson J A, Miclea P T, Schweizer S. Structural and optical investigations of Nd-doped fluorozirconate-based glass ceramics for enhanced upconverted fluorescence. Applied Physics Letters, 2008, 92(6): 061905
CrossRef
Google scholar
|
[16] |
Aisaka T, Fujii M, Hayashi S. Enhancement of upconversion luminescence of Er doped Al2O3 films by Ag island films. Applied Physics Letters, 2008, 92(13): 132105
CrossRef
Google scholar
|
[17] |
Capobianco J A, Boyer J C, Vetrone F, Speghini A, Bettinelli M. Optical spectroscopy and upconversion studies of Ho3+-doped Bulk and Nanocrystalline Y2O3. Chemistry of Materials, 2002, 14(7): 2915-2921
CrossRef
Google scholar
|
[18] |
Bünzli J C G. Benefiting from the unique properties of lanthanide ions. Accounts of Chemical Research, 2006, 39(1): 53-61
CrossRef
Google scholar
|
[19] |
Tissue B M. Synthesis and luminescence of lanthanide ions in nanoscale insulating hosts. Chemistry of Materials, 1998, 10(10): 2837-2845
CrossRef
Google scholar
|
[20] |
Hasegawa Y, Wada Y, Yanagida S. Strategies for the design of luminescent lanthanide(III) complexes and their photonic applications. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2004, 5(3): 183-202
CrossRef
Google scholar
|
[21] |
Zhang J, Malicka J, Gryczynski I, Lakowicz J R. Surface-enhanced fluorescence of fluorescein-labeled oligonucleotides capped on silver nanoparticles. Journal of Physical Chemistry B, 2005, 109(16): 7643-7648
CrossRef
Google scholar
|
[22] |
Shao M W, Shan Y Y, Wong N B, Lee S T. Silicon nanowire sensors for bioanalytical application: glucose and hydrogen peroxide detection. Advanced Functional Materials, 2005, 15(9): 1478-1482
CrossRef
Google scholar
|
[23] |
Lisiecki I, Pileni M P. Synthesis of copper metallic clusters using reverse micelles as microreactors. Journal of the American Chemical Society, 1993, 115(10): 3887-3896
CrossRef
Google scholar
|
[24] |
Shao M W, Cheng L, Zhang X H, Ma D D D, Lee S T. Excellent photocatalysis of HF-treated silicon nanowires. Journal of the American Chemical Society, 2009, 131(49): 17738-17739
CrossRef
Google scholar
|
[25] |
Tsang C H A, Liu Y, Kang Z H, Ma D D D, Wong N B, Lee S T. Metal (Cu, Au)-modified silicon nanowires for high-selectivity solvent-free hydrocarbon oxidation in air. Chemical Communications, 2009, (39): 5829-5831
CrossRef
Google scholar
|
[26] |
Gunnarsson L, Bjerneld E J, Xu H, Petronis S, Kasemo B, Käll M. Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Applied Physics Letters, 2001, 78(6): 802-804
CrossRef
Google scholar
|
/
〈 | 〉 |