Frontiers of Optoelectronics >
Broadband coplane metamaterial filter based on two nested split-ring-resonators
Received date: 19 Dec 2014
Accepted date: 03 Dec 2015
Published date: 29 Nov 2016
Copyright
Split ring resonators (SRRs)-based broadband metamaterial filters have attracted considerable attention due to their great prospect of practical applications. These filters had been usually obtained by stacking multiple different-sized metallic patterns, making their fabrication quite troublesome. Herein, we presented a simple design of broadband filter composed of two nested SRRs. The resonance bandwidth of the metamaterial filter gradually increased with the decrease of the arm length of the inner SRR. The increase in the resonance bandwidth was attributed to the increase in the radiation of the entire structure. Moreover, the bandwidth of the metamaterial can be further broadened by decreasing the period of the structure. The proposed filter provides a meaningful way toward expanding the bandwidth operating range from narrowband to broadband in an effective way.
Key words: metamaterial; broadband filter; split-ring-resonators
Benxin WANG , Xiang ZHAI , Guizhen WANG , Weiqing HUANG , Lingling WANG . Broadband coplane metamaterial filter based on two nested split-ring-resonators[J]. Frontiers of Optoelectronics, 2016 , 9(4) : 565 -570 . DOI: 10.1007/s12200-016-0501-y
1 |
Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980
|
2 |
Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969
|
3 |
Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index. Science, 2004, 305(5685): 788–792
|
4 |
Pendry J B, Holden A J, Robbins D J, Stewart W J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084
|
5 |
Yang J, Sauvan C, Liu H T, Lalanne P. Theory of fishnet negative-index optical metamaterials. Physical Review Letters, 2011, 107(4): 043903
|
6 |
Dolling G, Enkrich C, Wegener M, Zhou J F, Soukoulis C M, Linden S. Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Optics Letters, 2005, 30(23): 3198–3200
|
7 |
Liu N, Liu H, Zhu S, Giessen H. Stereometamaterials. Nature Photonics, 2009, 3(3): 157–162
|
8 |
Enkrich C, Wegener M, Linden S, Burger S, Zschiedrich L, Schmidt F, Zhou J F, Koschny T, Soukoulis C M. Magnetic metamaterials at telecommunication and visible frequencies. Physical Review Letters, 2005, 95(20): 203901
|
9 |
Chen H T, O’Hara J F, Taylor A J, Averitt R D, Highstrete C, Lee M, Padilla W J. Complementary planar terahertz metamaterials. Optics Express, 2007, 15(3): 1084–1095
|
10 |
Hussain S, Woo J M, Jang J . Dual-band terahertz metamaterials based on nested split ring resonators. Applied Physics Letters, 2012, 101(9): 091103
|
11 |
Wang B, Wang L, Wang G, Wang L, Zhai X, Li X, Huang W. A simple nested metamaterial structure with enhanced bandwidth performance. Optics Communications, 2013, 303: 13–14
|
12 |
Chowdhury D R, Singh R, Reiten M, Chen H T, Taylor A J, O’Hara J F, Azad A K. A broadband planar terahertz metamaterial with nested structure. Optics Express, 2011, 19(17): 15817–15823
|
13 |
Shen N, Massaouti M,Gokkavas M, Manceau J, Ozbay E, Kafesaki M, Koschny T, Tzortzakis S, Soukoulis C M. Optically implemented broadband blueshift switch in the terahertz regime. Physical Review Letters, 2011, 106(3): 037403
|
14 |
Tao H, Strikwerda A C, Fan K, Padilla W J, Zhang X, Averitt R D. Reconfigurable terahertz metamaterials. Physical Review Letters, 2009, 103(14): 147401
|
15 |
Wu D, Fang N, Sun C, Zhang X, Padilla W J, Basov D N, Smith D R, Schultz S. Terahertz plasmonic high pass filter. Applied Physics Letters, 2003, 83(1): 201–203
|
16 |
Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J, Chen H T. A metamaterial solid-state terahertz phase modulator. Nature Photonics, 2009, 3(3): 148–151
|
17 |
Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J.Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402
|
18 |
Wang B, Wang L, Wang G, Huang W, Li X, Zhai X. Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber. IEEE Photonics Technology Letters, 2014, 26(2): 111–114
|
19 |
Wang B, Wang L, Wang G, Huang W, Li X, Zhai X. Frequency continuous tunable terahertz metamaterial absorber. Journal of Lightwave Technology, 2014, 32(6): 1183–1189
|
20 |
Shen N H, Kafesaki M, Koschny T, Zhang L, Economou E N, Soukoulis C M. Broadband blueshift tunable metamaterials and dual-band switches. Physical Review B, 2009, 79(16): 161102
|
21 |
Han N R, Chen Z C, Lim C S, Ng B, Hong M H. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates. Optics Express, 2011, 19(8): 6990–6998
|
22 |
Li Z, Ding Y J. Terahertz broadband-stop filters. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(1): 8500705
|
23 |
Li X, Yang L, Hu C, Luo X, Hong M. Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency. Optics Express, 2011, 19(6): 5283–5289
|
24 |
Liu J, Zhang J, Cai L, Xu B, Song G. Tunable omnidirectional broadband band-stop filter in symmetric hybrid plasmonic structures. Plasmonics, 2013, 8(2): 1101–1108
|
25 |
Liang L, Jin B, Wu J, Huang Y, Ye Z, Huang X, Zhou D, Wang G, Jia X, Lu H, Kang L, Xu W, Chen J, Wu P. A flexible wideband bandpass terahertz filter using multi-layer metamaterials. Applied Physics B, Lasers and Optics, 2013, 113(2): 285–290
|
26 |
Chiang Y, Yang C, Yang Y, Pan C, Yen T. An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial. Applied Physics Letters, 2011, 99(19): 191909
|
27 |
Rigi-Tamandani A, Ahmadi-Shokouh J, Tavakoli S. Wideband planar split ring resonator based metamaterials. Progress In Electromagnetics Research M, 2013, 28: 115–128
|
28 |
Pan Z Y, Zhang P, Chen Z C, Vienne G, Hong M H. Hybrid SRRs design and fabrication for broadband terahertz metamaterials. IEEE Photonics Journal, 2012, 4(5): 1267–1272
|
29 |
Zhou J, Economon E N, Koschny T, Soukoulis C M. Unifying approach to left-handed material design. Optics Letters, 2006, 31(24): 3620–3622
|
30 |
Wokaun A, Gordon J P, Liao P F. Radiation damping in surface-enhanced raman scattering. Physical Review Letters, 1982, 48(14): 957–960
|
31 |
Novo C, Gomez D, Perez-Juste J, Zhang Z, Petrova H, Reismann M, Mulvaney P, Hartland G V. Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. Physical Chemistry Chemical Physics, 2006, 8(30): 3540–3546
|
/
〈 | 〉 |