Broadband coplane metamaterial filter based on two nested split-ring-resonators

Benxin WANG, Xiang ZHAI, Guizhen WANG, Weiqing HUANG, Lingling WANG

PDF(303 KB)
PDF(303 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (4) : 565-570. DOI: 10.1007/s12200-016-0501-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Broadband coplane metamaterial filter based on two nested split-ring-resonators

Author information +
History +

Abstract

Split ring resonators (SRRs)-based broadband metamaterial filters have attracted considerable attention due to their great prospect of practical applications. These filters had been usually obtained by stacking multiple different-sized metallic patterns, making their fabrication quite troublesome. Herein, we presented a simple design of broadband filter composed of two nested SRRs. The resonance bandwidth of the metamaterial filter gradually increased with the decrease of the arm length of the inner SRR. The increase in the resonance bandwidth was attributed to the increase in the radiation of the entire structure. Moreover, the bandwidth of the metamaterial can be further broadened by decreasing the period of the structure. The proposed filter provides a meaningful way toward expanding the bandwidth operating range from narrowband to broadband in an effective way.

Keywords

metamaterial / broadband filter / split-ring-resonators

Cite this article

Download citation ▾
Benxin WANG, Xiang ZHAI, Guizhen WANG, Weiqing HUANG, Lingling WANG. Broadband coplane metamaterial filter based on two nested split-ring-resonators. Front. Optoelectron., 2016, 9(4): 565‒570 https://doi.org/10.1007/s12200-016-0501-y

References

[1]
Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980
CrossRef Pubmed Google scholar
[2]
Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969
CrossRef Pubmed Google scholar
[3]
Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index. Science, 2004, 305(5685): 788–792
CrossRef Pubmed Google scholar
[4]
Pendry J B, Holden A J, Robbins D J, Stewart W J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084
CrossRef Google scholar
[5]
Yang J, Sauvan C, Liu H T, Lalanne P. Theory of fishnet negative-index optical metamaterials. Physical Review Letters, 2011, 107(4): 043903
[6]
Dolling G, Enkrich C, Wegener M, Zhou J F, Soukoulis C M, Linden S. Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Optics Letters, 2005, 30(23): 3198–3200
CrossRef Pubmed Google scholar
[7]
Liu N, Liu H, Zhu S, Giessen H. Stereometamaterials. Nature Photonics, 2009, 3(3): 157–162
CrossRef Google scholar
[8]
Enkrich C, Wegener M, Linden S, Burger S, Zschiedrich L, Schmidt F, Zhou J F, Koschny T, Soukoulis C M. Magnetic metamaterials at telecommunication and visible frequencies. Physical Review Letters, 2005, 95(20): 203901
[9]
Chen H T, O’Hara J F, Taylor A J, Averitt R D, Highstrete C, Lee M, Padilla W J. Complementary planar terahertz metamaterials. Optics Express, 2007, 15(3): 1084–1095
CrossRef Pubmed Google scholar
[10]
Hussain S, Woo J M, Jang J . Dual-band terahertz metamaterials based on nested split ring resonators. Applied Physics Letters, 2012, 101(9): 091103
[11]
Wang B, Wang L, Wang G, Wang L, Zhai X, Li X, Huang W. A simple nested metamaterial structure with enhanced bandwidth performance. Optics Communications, 2013, 303: 13–14
CrossRef Google scholar
[12]
Chowdhury D R, Singh R, Reiten M, Chen H T, Taylor A J, O’Hara J F, Azad A K. A broadband planar terahertz metamaterial with nested structure. Optics Express, 2011, 19(17): 15817–15823
CrossRef Pubmed Google scholar
[13]
Shen N, Massaouti M,Gokkavas M, Manceau J, Ozbay E, Kafesaki M, Koschny T, Tzortzakis S, Soukoulis C M. Optically implemented broadband blueshift switch in the terahertz regime. Physical Review Letters, 2011, 106(3): 037403
[14]
Tao H, Strikwerda A C, Fan K, Padilla W J, Zhang X, Averitt R D. Reconfigurable terahertz metamaterials. Physical Review Letters, 2009, 103(14): 147401
[15]
Wu D, Fang N, Sun C, Zhang X, Padilla W J, Basov D N, Smith D R, Schultz S. Terahertz plasmonic high pass filter. Applied Physics Letters, 2003, 83(1): 201–203
CrossRef Google scholar
[16]
Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J, Chen H T. A metamaterial solid-state terahertz phase modulator. Nature Photonics, 2009, 3(3): 148–151
CrossRef Google scholar
[17]
Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J.Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402
[18]
Wang B, Wang L, Wang G, Huang W, Li X, Zhai X. Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber. IEEE Photonics Technology Letters, 2014, 26(2): 111–114
CrossRef Google scholar
[19]
Wang B, Wang L, Wang G, Huang W, Li X, Zhai X. Frequency continuous tunable terahertz metamaterial absorber. Journal of Lightwave Technology, 2014, 32(6): 1183–1189
CrossRef Google scholar
[20]
Shen N H, Kafesaki M, Koschny T, Zhang L, Economou E N, Soukoulis C M. Broadband blueshift tunable metamaterials and dual-band switches. Physical Review B, 2009, 79(16): 161102
[21]
Han N R, Chen Z C, Lim C S, Ng B, Hong M H. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates. Optics Express, 2011, 19(8): 6990–6998
CrossRef Pubmed Google scholar
[22]
Li Z, Ding Y J. Terahertz broadband-stop filters. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(1): 8500705
[23]
Li X, Yang L, Hu C, Luo X, Hong M. Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency. Optics Express, 2011, 19(6): 5283–5289
CrossRef Pubmed Google scholar
[24]
Liu J, Zhang J, Cai L, Xu B, Song G. Tunable omnidirectional broadband band-stop filter in symmetric hybrid plasmonic structures. Plasmonics, 2013, 8(2): 1101–1108
CrossRef Google scholar
[25]
Liang L, Jin B, Wu J, Huang Y, Ye Z, Huang X, Zhou D, Wang G, Jia X, Lu H, Kang L, Xu W, Chen J, Wu P. A flexible wideband bandpass terahertz filter using multi-layer metamaterials. Applied Physics B, Lasers and Optics, 2013, 113(2): 285–290
CrossRef Google scholar
[26]
Chiang Y, Yang C, Yang Y, Pan C, Yen T. An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial. Applied Physics Letters, 2011, 99(19): 191909
[27]
Rigi-Tamandani A, Ahmadi-Shokouh J, Tavakoli S. Wideband planar split ring resonator based metamaterials. Progress In Electromagnetics Research M, 2013, 28: 115–128
CrossRef Google scholar
[28]
Pan Z Y, Zhang P, Chen Z C, Vienne G, Hong M H. Hybrid SRRs design and fabrication for broadband terahertz metamaterials. IEEE Photonics Journal, 2012, 4(5): 1267–1272
CrossRef Google scholar
[29]
Zhou J, Economon E N, Koschny T, Soukoulis C M. Unifying approach to left-handed material design. Optics Letters, 2006, 31(24): 3620–3622
CrossRef Pubmed Google scholar
[30]
Wokaun A, Gordon J P, Liao P F. Radiation damping in surface-enhanced raman scattering. Physical Review Letters, 1982, 48(14): 957–960
CrossRef Google scholar
[31]
Novo C, Gomez D, Perez-Juste J, Zhang Z, Petrova H, Reismann M, Mulvaney P, Hartland G V. Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. Physical Chemistry Chemical Physics, 2006, 8(30): 3540–3546
CrossRef Pubmed Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61176116 and 11074069), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20120161130003), and the 2013 Graduate Science and Technology Innovation Program of Hunan province (No. 521298927).

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(303 KB)

Accesses

Citations

Detail

Sections
Recommended

/