Broadband coplane metamaterial filter based on two nested split-ring-resonators
Benxin WANG, Xiang ZHAI, Guizhen WANG, Weiqing HUANG, Lingling WANG
Broadband coplane metamaterial filter based on two nested split-ring-resonators
Split ring resonators (SRRs)-based broadband metamaterial filters have attracted considerable attention due to their great prospect of practical applications. These filters had been usually obtained by stacking multiple different-sized metallic patterns, making their fabrication quite troublesome. Herein, we presented a simple design of broadband filter composed of two nested SRRs. The resonance bandwidth of the metamaterial filter gradually increased with the decrease of the arm length of the inner SRR. The increase in the resonance bandwidth was attributed to the increase in the radiation of the entire structure. Moreover, the bandwidth of the metamaterial can be further broadened by decreasing the period of the structure. The proposed filter provides a meaningful way toward expanding the bandwidth operating range from narrowband to broadband in an effective way.
metamaterial / broadband filter / split-ring-resonators
[1] |
Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. Metamaterial electromagnetic cloak at microwave frequencies. Science, 2006, 314(5801): 977–980
CrossRef
Pubmed
Google scholar
|
[2] |
Pendry J B. Negative refraction makes a perfect lens. Physical Review Letters, 2000, 85(18): 3966–3969
CrossRef
Pubmed
Google scholar
|
[3] |
Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index. Science, 2004, 305(5685): 788–792
CrossRef
Pubmed
Google scholar
|
[4] |
Pendry J B, Holden A J, Robbins D J, Stewart W J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075–2084
CrossRef
Google scholar
|
[5] |
Yang J, Sauvan C, Liu H T, Lalanne P. Theory of fishnet negative-index optical metamaterials. Physical Review Letters, 2011, 107(4): 043903
|
[6] |
Dolling G, Enkrich C, Wegener M, Zhou J F, Soukoulis C M, Linden S. Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. Optics Letters, 2005, 30(23): 3198–3200
CrossRef
Pubmed
Google scholar
|
[7] |
Liu N, Liu H, Zhu S, Giessen H. Stereometamaterials. Nature Photonics, 2009, 3(3): 157–162
CrossRef
Google scholar
|
[8] |
Enkrich C, Wegener M, Linden S, Burger S, Zschiedrich L, Schmidt F, Zhou J F, Koschny T, Soukoulis C M. Magnetic metamaterials at telecommunication and visible frequencies. Physical Review Letters, 2005, 95(20): 203901
|
[9] |
Chen H T, O’Hara J F, Taylor A J, Averitt R D, Highstrete C, Lee M, Padilla W J. Complementary planar terahertz metamaterials. Optics Express, 2007, 15(3): 1084–1095
CrossRef
Pubmed
Google scholar
|
[10] |
Hussain S, Woo J M, Jang J . Dual-band terahertz metamaterials based on nested split ring resonators. Applied Physics Letters, 2012, 101(9): 091103
|
[11] |
Wang B, Wang L, Wang G, Wang L, Zhai X, Li X, Huang W. A simple nested metamaterial structure with enhanced bandwidth performance. Optics Communications, 2013, 303: 13–14
CrossRef
Google scholar
|
[12] |
Chowdhury D R, Singh R, Reiten M, Chen H T, Taylor A J, O’Hara J F, Azad A K. A broadband planar terahertz metamaterial with nested structure. Optics Express, 2011, 19(17): 15817–15823
CrossRef
Pubmed
Google scholar
|
[13] |
Shen N, Massaouti M,Gokkavas M, Manceau J, Ozbay E, Kafesaki M, Koschny T, Tzortzakis S, Soukoulis C M. Optically implemented broadband blueshift switch in the terahertz regime. Physical Review Letters, 2011, 106(3): 037403
|
[14] |
Tao H, Strikwerda A C, Fan K, Padilla W J, Zhang X, Averitt R D. Reconfigurable terahertz metamaterials. Physical Review Letters, 2009, 103(14): 147401
|
[15] |
Wu D, Fang N, Sun C, Zhang X, Padilla W J, Basov D N, Smith D R, Schultz S. Terahertz plasmonic high pass filter. Applied Physics Letters, 2003, 83(1): 201–203
CrossRef
Google scholar
|
[16] |
Padilla W J, Cich M J, Azad A K, Averitt R D, Taylor A J, Chen H T. A metamaterial solid-state terahertz phase modulator. Nature Photonics, 2009, 3(3): 148–151
CrossRef
Google scholar
|
[17] |
Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J.Perfect metamaterial absorber. Physical Review Letters, 2008, 100(20): 207402
|
[18] |
Wang B, Wang L, Wang G, Huang W, Li X, Zhai X. Theoretical investigation of broadband and wide-angle terahertz metamaterial absorber. IEEE Photonics Technology Letters, 2014, 26(2): 111–114
CrossRef
Google scholar
|
[19] |
Wang B, Wang L, Wang G, Huang W, Li X, Zhai X. Frequency continuous tunable terahertz metamaterial absorber. Journal of Lightwave Technology, 2014, 32(6): 1183–1189
CrossRef
Google scholar
|
[20] |
Shen N H, Kafesaki M, Koschny T, Zhang L, Economou E N, Soukoulis C M. Broadband blueshift tunable metamaterials and dual-band switches. Physical Review B, 2009, 79(16): 161102
|
[21] |
Han N R, Chen Z C, Lim C S, Ng B, Hong M H. Broadband multi-layer terahertz metamaterials fabrication and characterization on flexible substrates. Optics Express, 2011, 19(8): 6990–6998
CrossRef
Pubmed
Google scholar
|
[22] |
Li Z, Ding Y J. Terahertz broadband-stop filters. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(1): 8500705
|
[23] |
Li X, Yang L, Hu C, Luo X, Hong M. Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency. Optics Express, 2011, 19(6): 5283–5289
CrossRef
Pubmed
Google scholar
|
[24] |
Liu J, Zhang J, Cai L, Xu B, Song G. Tunable omnidirectional broadband band-stop filter in symmetric hybrid plasmonic structures. Plasmonics, 2013, 8(2): 1101–1108
CrossRef
Google scholar
|
[25] |
Liang L, Jin B, Wu J, Huang Y, Ye Z, Huang X, Zhou D, Wang G, Jia X, Lu H, Kang L, Xu W, Chen J, Wu P. A flexible wideband bandpass terahertz filter using multi-layer metamaterials. Applied Physics B, Lasers and Optics, 2013, 113(2): 285–290
CrossRef
Google scholar
|
[26] |
Chiang Y, Yang C, Yang Y, Pan C, Yen T. An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial. Applied Physics Letters, 2011, 99(19): 191909
|
[27] |
Rigi-Tamandani A, Ahmadi-Shokouh J, Tavakoli S. Wideband planar split ring resonator based metamaterials. Progress In Electromagnetics Research M, 2013, 28: 115–128
CrossRef
Google scholar
|
[28] |
Pan Z Y, Zhang P, Chen Z C, Vienne G, Hong M H. Hybrid SRRs design and fabrication for broadband terahertz metamaterials. IEEE Photonics Journal, 2012, 4(5): 1267–1272
CrossRef
Google scholar
|
[29] |
Zhou J, Economon E N, Koschny T, Soukoulis C M. Unifying approach to left-handed material design. Optics Letters, 2006, 31(24): 3620–3622
CrossRef
Pubmed
Google scholar
|
[30] |
Wokaun A, Gordon J P, Liao P F. Radiation damping in surface-enhanced raman scattering. Physical Review Letters, 1982, 48(14): 957–960
CrossRef
Google scholar
|
[31] |
Novo C, Gomez D, Perez-Juste J, Zhang Z, Petrova H, Reismann M, Mulvaney P, Hartland G V. Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. Physical Chemistry Chemical Physics, 2006, 8(30): 3540–3546
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |