Frontiers of Optoelectronics >
Recent progress in colloidal quantum dot photovoltaics
Received date: 13 Apr 2015
Accepted date: 19 Jun 2015
Published date: 18 Sep 2015
Copyright
The development of photovoltaic devices, solar cells, plays a key role in renewable energy sources. Semiconductor colloidal quantum dots (CQDs), including lead chacolgenide CQDs that have tunable electronic bandgaps from infrared to visible, serve as good candidates to harvest the broad spectrum of sunlight. CQDs can be processed from solution, allowing them to be deposited in a roll-to-roll printing process compatible with low-cost fabrication of large area solar panels. Enhanced multi-exciton generation process in CQD, compared with bulk semiconductors, enables the potential of exceeding Shockley-Queisser limit in CQD photovoltaics. For these advantages, CQDs photovoltaics attract great attention in academics, and extensive research works accelerate the development of CQD based solar cells. The record efficiency of CQD solar cells increased from 5.1% in 2011 to 9.9% in 2015. The improvement relies on optimized material processing, device architecture and various efforts to improve carrier collection efficiency. In this review, we have summarized the progress of CQD photovoltaics in year 2012 and after. Here we focused on the theoretical and experimental works that improve the understanding of the device physics in CQD solar cells, which may guide the development of CQD photovoltaics within the research community.
Xihua WANG . Recent progress in colloidal quantum dot photovoltaics[J]. Frontiers of Optoelectronics, 2015 , 8(3) : 241 -251 . DOI: 10.1007/s12200-015-0524-9
1 |
Rossetti R, Nakahara S, Brus L E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. Journal of Chemical Physics, 1983, 79(2): 1086–1088
|
2 |
Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E= S, Se, Te) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19): 8706–8715
|
3 |
Shirasaki Y, Supran G J, Bawendi M G, Bulovic V. Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics, 2013, 7(1): 13–23
|
4 |
Konstantatos G, Sargent E H. Colloidal quantum dot photodetectors. Infrared Physics & Technology, 2011, 54(3): 278–282
|
5 |
Kim J Y, Voznyy O, Zhitomirsky D, Sargent E H. 25th anniversary article: colloidal quantum dot materials and devices: a quarter-century of advances. Advanced Materials, 2013, 25(36): 4986–5010
|
6 |
Kim M R, Ma D. Quantum-dot-based solar cells: recent advances, strategies, and challenges. Journal of Physical Chemistry Letters, 2015, 6(1): 85–99
|
7 |
Kramer I J, Sargent E H. The architecture of colloidal quantum dot solar cells: materials to devices. Chemical Reviews, 2014, 114(1): 863–882
|
8 |
Lan X, Masala S, Sargent E H. Charge-extraction strategies for colloidal quantum dot photovoltaics. Nature Materials, 2014, 13(3): 233–240
|
9 |
Goetzberger A, Knobloch J, Voß B. Crystalline Silicon Solar Cells. 1st ed. New York: John Wiley & Sons Ltd, 1998, 49–86
|
10 |
Voznyy O, Thon S M, Ip A H, Sargent E H. Dynamic trap formation and elimination in colloidal quantum dots. Journal of Physical Chemistry Letters, 2013, 4(6): 987–992
|
11 |
Sze S M, Ng K K. Physics of Semiconductor Devices. 3rd ed. New York: John Wiley & Sons Ltd, 2007, 7–72
|
12 |
Ocier C R, Whitham K, Hanrath T, Robinson R D. nanocrystal field-effect transistors. Journal of Physical Chemistry C, 2014, 118(7): 3377–3385
|
13 |
Liu Y, Tolentino J, Gibbs M, Ihly R, Perkins C L, Liu Y, Crawford N, Hemminger J C, Law M. PbSe quantum dot field-effect transistors with air-stable electron mobilities above 7 cm2·V−1·s−1. Nano Letters, 2013, 13(4): 1578–1587
|
14 |
Otto T, Miller C, Tolentino J, Liu Y, Law M, Yu D. Gate-dependent carrier diffusion length in lead selenide quantum dot field-effect transistors. Nano Letters, 2013, 13(8): 3463–3469
|
15 |
Ip A H, Thon S M, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny L R, Carey G H, Fischer A, Kemp K W, Kramer I J, Ning Z, Labelle A J, Chou K W, Amassian A, Sargent E H. Hybrid passivated colloidal quantum dot solids. Nature Nanotechnology, 2012, 7(9): 577–582
|
16 |
Ning Z, Ren Y, Hoogland S, Voznyy O, Levina L, Stadler P, Lan X, Zhitomirsky D, Sargent E H. All-inorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation. Advanced Materials, 2012, 24(47): 6295–6299
|
17 |
Jeong K S, Tang J, Liu H, Kim J, Schaefer A W, Kemp K, Levina L, Wang X, Hoogland S, Debnath R, Brzozowski L, Sargent E H, Asbury J B. Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics. ACS Nano, 2012, 6(1): 89–99
|
18 |
Carey G H, Levina L, Comin R, Voznyy O, Sargent E H. Record charge carrier diffusion length in colloidal quantum dot solids via mutual dot-to-dot surface passivation. Advanced Materials, 2015, 27(21): 3325–3330
|
19 |
Zhitomirsky D, Voznyy O, Hoogland S, Sargent E H. Measuring charge carrier diffusion in coupled colloidal quantum dot solids. ACS Nano, 2013, 7(6): 5282–5290
|
20 |
Kemp K W, Wong C T O, Hoogland S H, Sargent E H. Photocurrent extraction efficiency in colloidal quantum dot photovoltaics. Applied Physics Letters, 2013, 103(21): 211101
|
21 |
Zhitomirsky D, Voznyy O, Levina L, Hoogland S, Kemp K W, Ip A H, Thon S M, Sargent E H. Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime. Nature Communications, 2014, 5: 3803
|
22 |
Carey G H, Kramer I J, Kanjanaboos P, Moreno-Bautista G, Voznyy O, Rollny L, Tang J A, Hoogland S, Sargent E H. Electronically active impurities in colloidal quantum dot solids. ACS Nano, 2014, 8(11): 11763–11769
|
23 |
Tang J, Liu H, Zhitomirsky D, Hoogland S, Wang X, Furukawa M, Levina L, Sargent E H. Quantum junction solar cells. Nano Letters, 2012, 12(9): 4889–4894
|
24 |
Kemp K W, Labelle A J, Thon S M, Ip A H, Kramer I J, Hoogland S, Sargent E H. Interface recombination in depleted heterojunction photovoltaics based on colloidal quantum dots. Advanced Energy Materials, 2013, 3(7): 917–922
|
25 |
Voznyy O, Zhitomirsky D, Stadler P, Ning Z, Hoogland S, Sargent E H. A charge-orbital balance picture of doping in colloidal quantum dot solids. ACS Nano, 2012, 6(9): 8448–8455
|
26 |
Zhitomirsky D, Furukawa M, Tang J, Stadler P, Hoogland S, Voznyy O, Liu H, Sargent E H. N-type colloidal-quantum-dot solids for photovoltaics. Advanced Materials, 2012, 24(46): 6181–6185
|
27 |
Ning Z, Voznyy O, Pan J, Hoogland S, Adinolfi V, Xu J, Li M, Kirmani A R, Sun J P, Minor J, Kemp K W, Dong H, Rollny L, Labelle A, Carey G, Sutherland B, Hill I, Amassian A, Liu H, Tang J, Bakr O M, Sargent E H. Air-stable n-type colloidal quantum dot solids. Nature Materials, 2014, 13(8): 822–828
|
28 |
Stavrinadis A, Rath A K, de Arquer F P, Diedenhofen S L, Magén C, Martinez L, So D, Konstantatos G. Heterovalent cation substitutional doping for quantum dot homojunction solar cells. Nature Communications, 2013, 4: 2981
|
29 |
Ko D K, Brown P R, Bawendi M G, Bulović V. p-i-n Heterojunction solar cells with a colloidal quantum-dot absorber layer. Advanced Materials, 2014, 26(28): 4845–4850
|
30 |
Chuang C H, Brown P R, Bulović V, Bawendi M G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nature Materials, 2014, 13(8): 796–801
|
31 |
Ning Z, Zhitomirsky D, Adinolfi V, Sutherland B, Xu J, Voznyy O, Maraghechi P, Lan X, Hoogland S, Ren Y, Sargent E H. Graded doping for enhanced colloidal quantum dot photovoltaics. Advanced Materials, 2013, 25(12): 1719–1723
|
32 |
Yuan M, Zhitomirsky D, Adinolfi V, Voznyy O, Kemp K W, Ning Z, Lan X, Xu J, Kim J Y, Dong H, Sargent E H. Doping control via molecularly engineered surface ligand coordination. Advanced Materials, 2013, 25(39): 5586–5592
|
33 |
Brongersma M L, Cui Y, Fan S. Light management for photovoltaics using high-index nanostructures. Nature Materials, 2014, 13(5): 451–460
|
34 |
Kramer I J, Zhitomirsky D, Bass J D, Rice P M, Topuria T, Krupp L, Thon S M, Ip A H, Debnath R, Kim H C, Sargent E H. Ordered nanopillar structured electrodes for depleted bulk heterojunction colloidal quantum dot solar cells. Advanced Materials, 2012, 24(17): 2315–2319
|
35 |
Lan X, Bai J, Masala S, Thon S M, Ren Y, Kramer I J, Hoogland S, Simchi A, Koleilat G I, Paz-Soldan D, Ning Z, Labelle A J, Kim J Y, Jabbour G, Sargent E H. Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells. Advanced Materials, 2013, 25(12): 1769–1773
|
36 |
Adachi M M, Labelle A J, Thon S M, Lan X, Hoogland S, Sargent E H. Broadband solar absorption enhancement via periodic nanostructuring of electrodes. Scientific Reports, 2013, 3: 2928
|
37 |
Mahpeykar S M, Xiong Q, Wang X. Resonance-induced absorption enhancement in colloidal quantum dot solar cells using nanostructured electrodes. Optics Express, 2014, 22(S6 Suppl 6): A1576–A1588
|
38 |
Mihi A, Bernechea M, Kufer D, Konstantatos G. Coupling resonant modes of embedded dielectric microspheres in solution-processed solar cells. Advanced Optical Materials, 2013, 1(2): 139–143
|
39 |
Kim S, Kim J K, Gao J, Song J H, An H J, You T S, Lee T S, Jeong J R, Lee E S, Jeong J H, Beard M C, Jeong S. Lead sulfide nanocrystal quantum dot solar cells with trenched ZnO fabricated via nanoimprinting. ACS Applied Materials & Interfaces, 2013, 5(9): 3803–3808
|
40 |
Mihi A, Beck F J, Lasanta T, Rath A K, Konstantatos G. Imprinted electrodes for enhanced light trapping in solution processed solar cells. Advanced Materials, 2014, 26(3): 443–448
|
41 |
Paz-Soldan D, Lee A, Thon S M, Adachi M M, Dong H, Maraghechi P, Yuan M, Labelle A J, Hoogland S, Liu K, Kumacheva E, Sargent E H. Jointly tuned plasmonic-excitonic photovoltaics using nanoshells. Nano Letters, 2013, 13(4): 1502–1508
|
42 |
Beck F J, Stavrinadis A, Diedenhofen S L, Lasanta T, Konstantatos G. Surface plasmon polariton couplers for light trapping in thin-film absorbers and their application to colloidal quantum dot optoelectronics. ACS Photonics, 2014, 1(11): 1197–1205
|
43 |
Koleilat G I, Kramer I J, Wong C T O, Thon S M, Labelle A J, Hoogland S, Sargent E H. Folded-light-path colloidal quantum dot solar cells. Scientific Reports, 2013, 3: 2166
|
44 |
Labelle A J, Thon S M, Masala S, Adachi M M, Dong H, Farahani M, Ip A H, Fratalocchi A, Sargent E H. Colloidal quantum dot solar cells exploiting hierarchical structuring. Nano Letters, 2015, 15(2): 1101–1108
|
45 |
Fischer A, Rollny L, Pan J, Carey G H, Thon S M, Hoogland S, Voznyy O, Zhitomirsky D, Kim J Y, Bakr O M, Sargent E H. Directly deposited quantum dot solids using a colloidally stable nanoparticle ink. Advanced Materials, 2013, 25(40): 5742–5749
|
46 |
Ning Z, Dong H, Zhang Q, Voznyy O, Sargent E H. Solar cells based on inks of n-type colloidal quantum dots. ACS Nano, 2014, 8(10): 10321–10327
|
47 |
Kramer I J, Moreno-Bautista G, Minor J C, Kopilovic D, Sargent E H. Colloidal quantum dot solar cells on curved and flexible substrates. Applied Physics Letters, 2014, 105(16): 163902
|
48 |
Kramer I J, Minor J C, Moreno-Bautista G, Rollny L, Kanjanaboos P, Kopilovic D, Thon S M, Carey G H, Chou K W, Zhitomirsky D, Amassian A, Sargent E H. Efficient spray-coated colloidal quantum dot solar cells. Advanced Materials, 2015, 27(1): 116–121
|
49 |
NREL. The certified efficiency of CQD solar cells, 2015
|
/
〈 | 〉 |