Recent progress in colloidal quantum dot photovoltaics

Xihua WANG

PDF(1702 KB)
PDF(1702 KB)
Front. Optoelectron. ›› 2015, Vol. 8 ›› Issue (3) : 241-251. DOI: 10.1007/s12200-015-0524-9
REVIEW ARTICLE
REVIEW ARTICLE

Recent progress in colloidal quantum dot photovoltaics

Author information +
History +

Abstract

The development of photovoltaic devices, solar cells, plays a key role in renewable energy sources. Semiconductor colloidal quantum dots (CQDs), including lead chacolgenide CQDs that have tunable electronic bandgaps from infrared to visible, serve as good candidates to harvest the broad spectrum of sunlight. CQDs can be processed from solution, allowing them to be deposited in a roll-to-roll printing process compatible with low-cost fabrication of large area solar panels. Enhanced multi-exciton generation process in CQD, compared with bulk semiconductors, enables the potential of exceeding Shockley-Queisser limit in CQD photovoltaics. For these advantages, CQDs photovoltaics attract great attention in academics, and extensive research works accelerate the development of CQD based solar cells. The record efficiency of CQD solar cells increased from 5.1% in 2011 to 9.9% in 2015. The improvement relies on optimized material processing, device architecture and various efforts to improve carrier collection efficiency. In this review, we have summarized the progress of CQD photovoltaics in year 2012 and after. Here we focused on the theoretical and experimental works that improve the understanding of the device physics in CQD solar cells, which may guide the development of CQD photovoltaics within the research community.

Graphical abstract

Keywords

colloidal quantum dot (CQD) / solar cell / photovoltaics / carrier extraction / light trapping

Cite this article

Download citation ▾
Xihua WANG. Recent progress in colloidal quantum dot photovoltaics. Front. Optoelectron., 2015, 8(3): 241‒251 https://doi.org/10.1007/s12200-015-0524-9

Full size|PPT slide

Xihua Wang received the B.Sc. degree in physics from Peking University (Beijing) in 2003, and the Master and Ph.D. degrees in physics from Boston University in 2005 and 2009, respectively. He was a Postdoctoral Fellow in the Department of Electrical and Computer Engineering at the University of Toronto from 2009 to 2012. Since July 2012, he has been an Assistant Professor in the Department of Electrical and Computer Engineering at the University of Alberta. Dr. Wang’s research interests are in the area of nanomaterials and nanofabrication for photovoltaics, LEDs, photodetectors, and flexible electronics.

References

[1]
Rossetti R, Nakahara S, Brus L E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution. Journal of Chemical Physics, 1983, 79(2): 1086–1088
CrossRef Google scholar
[2]
Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E= S, Se, Te) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19): 8706–8715
CrossRef Google scholar
[3]
Shirasaki Y, Supran G J, Bawendi M G, Bulovic V. Emergence of colloidal quantum-dot light-emitting technologies. Nature Photonics, 2013, 7(1): 13–23
CrossRef Google scholar
[4]
Konstantatos G, Sargent E H. Colloidal quantum dot photodetectors. Infrared Physics & Technology, 2011, 54(3): 278–282
CrossRef Google scholar
[5]
Kim J Y, Voznyy O, Zhitomirsky D, Sargent E H. 25th anniversary article: colloidal quantum dot materials and devices: a quarter-century of advances. Advanced Materials, 2013, 25(36): 4986–5010
CrossRef Pubmed Google scholar
[6]
Kim M R, Ma D. Quantum-dot-based solar cells: recent advances, strategies, and challenges. Journal of Physical Chemistry Letters, 2015, 6(1): 85–99
CrossRef Google scholar
[7]
Kramer I J, Sargent E H. The architecture of colloidal quantum dot solar cells: materials to devices. Chemical Reviews, 2014, 114(1): 863–882
CrossRef Pubmed Google scholar
[8]
Lan X, Masala S, Sargent E H. Charge-extraction strategies for colloidal quantum dot photovoltaics. Nature Materials, 2014, 13(3): 233–240
CrossRef Pubmed Google scholar
[9]
Goetzberger A, Knobloch J, Voß B. Crystalline Silicon Solar Cells. 1st ed. New York: John Wiley & Sons Ltd, 1998, 49–86
[10]
Voznyy O, Thon S M, Ip A H, Sargent E H. Dynamic trap formation and elimination in colloidal quantum dots. Journal of Physical Chemistry Letters, 2013, 4(6): 987–992
CrossRef Google scholar
[11]
Sze S M, Ng K K. Physics of Semiconductor Devices. 3rd ed. New York: John Wiley & Sons Ltd, 2007, 7–72
[12]
Ocier C R, Whitham K, Hanrath T, Robinson R D. nanocrystal field-effect transistors. Journal of Physical Chemistry C, 2014, 118(7): 3377–3385
CrossRef Google scholar
[13]
Liu Y, Tolentino J, Gibbs M, Ihly R, Perkins C L, Liu Y, Crawford N, Hemminger J C, Law M. PbSe quantum dot field-effect transistors with air-stable electron mobilities above 7 cm2·V−1·s−1. Nano Letters, 2013, 13(4): 1578–1587
Pubmed
[14]
Otto T, Miller C, Tolentino J, Liu Y, Law M, Yu D. Gate-dependent carrier diffusion length in lead selenide quantum dot field-effect transistors. Nano Letters, 2013, 13(8): 3463–3469
CrossRef Pubmed Google scholar
[15]
Ip A H, Thon S M, Hoogland S, Voznyy O, Zhitomirsky D, Debnath R, Levina L, Rollny L R, Carey G H, Fischer A, Kemp K W, Kramer I J, Ning Z, Labelle A J, Chou K W, Amassian A, Sargent E H. Hybrid passivated colloidal quantum dot solids. Nature Nanotechnology, 2012, 7(9): 577–582
CrossRef Pubmed Google scholar
[16]
Ning Z, Ren Y, Hoogland S, Voznyy O, Levina L, Stadler P, Lan X, Zhitomirsky D, Sargent E H. All-inorganic colloidal quantum dot photovoltaics employing solution-phase halide passivation. Advanced Materials, 2012, 24(47): 6295–6299
CrossRef Pubmed Google scholar
[17]
Jeong K S, Tang J, Liu H, Kim J, Schaefer A W, Kemp K, Levina L, Wang X, Hoogland S, Debnath R, Brzozowski L, Sargent E H, Asbury J B. Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics. ACS Nano, 2012, 6(1): 89–99
CrossRef Pubmed Google scholar
[18]
Carey G H, Levina L, Comin R, Voznyy O, Sargent E H. Record charge carrier diffusion length in colloidal quantum dot solids via mutual dot-to-dot surface passivation. Advanced Materials, 2015, 27(21): 3325–3330
CrossRef Pubmed Google scholar
[19]
Zhitomirsky D, Voznyy O, Hoogland S, Sargent E H. Measuring charge carrier diffusion in coupled colloidal quantum dot solids. ACS Nano, 2013, 7(6): 5282–5290
CrossRef Pubmed Google scholar
[20]
Kemp K W, Wong C T O, Hoogland S H, Sargent E H. Photocurrent extraction efficiency in colloidal quantum dot photovoltaics. Applied Physics Letters, 2013, 103(21): 211101
CrossRef Google scholar
[21]
Zhitomirsky D, Voznyy O, Levina L, Hoogland S, Kemp K W, Ip A H, Thon S M, Sargent E H. Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime. Nature Communications, 2014, 5: 3803
CrossRef Pubmed Google scholar
[22]
Carey G H, Kramer I J, Kanjanaboos P, Moreno-Bautista G, Voznyy O, Rollny L, Tang J A, Hoogland S, Sargent E H. Electronically active impurities in colloidal quantum dot solids. ACS Nano, 2014, 8(11): 11763–11769
CrossRef Pubmed Google scholar
[23]
Tang J, Liu H, Zhitomirsky D, Hoogland S, Wang X, Furukawa M, Levina L, Sargent E H. Quantum junction solar cells. Nano Letters, 2012, 12(9): 4889–4894
CrossRef Pubmed Google scholar
[24]
Kemp K W, Labelle A J, Thon S M, Ip A H, Kramer I J, Hoogland S, Sargent E H. Interface recombination in depleted heterojunction photovoltaics based on colloidal quantum dots. Advanced Energy Materials, 2013, 3(7): 917–922
CrossRef Google scholar
[25]
Voznyy O, Zhitomirsky D, Stadler P, Ning Z, Hoogland S, Sargent E H. A charge-orbital balance picture of doping in colloidal quantum dot solids. ACS Nano, 2012, 6(9): 8448–8455
CrossRef Pubmed Google scholar
[26]
Zhitomirsky D, Furukawa M, Tang J, Stadler P, Hoogland S, Voznyy O, Liu H, Sargent E H. N-type colloidal-quantum-dot solids for photovoltaics. Advanced Materials, 2012, 24(46): 6181–6185
CrossRef Pubmed Google scholar
[27]
Ning Z, Voznyy O, Pan J, Hoogland S, Adinolfi V, Xu J, Li M, Kirmani A R, Sun J P, Minor J, Kemp K W, Dong H, Rollny L, Labelle A, Carey G, Sutherland B, Hill I, Amassian A, Liu H, Tang J, Bakr O M, Sargent E H. Air-stable n-type colloidal quantum dot solids. Nature Materials, 2014, 13(8): 822–828
CrossRef Pubmed Google scholar
[28]
Stavrinadis A, Rath A K, de Arquer F P, Diedenhofen S L, Magén C, Martinez L, So D, Konstantatos G. Heterovalent cation substitutional doping for quantum dot homojunction solar cells. Nature Communications, 2013, 4: 2981
CrossRef Pubmed Google scholar
[29]
Ko D K, Brown P R, Bawendi M G, Bulović V. p-i-n Heterojunction solar cells with a colloidal quantum-dot absorber layer. Advanced Materials, 2014, 26(28): 4845–4850
CrossRef Pubmed Google scholar
[30]
Chuang C H, Brown P R, Bulović V, Bawendi M G. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nature Materials, 2014, 13(8): 796–801
CrossRef Pubmed Google scholar
[31]
Ning Z, Zhitomirsky D, Adinolfi V, Sutherland B, Xu J, Voznyy O, Maraghechi P, Lan X, Hoogland S, Ren Y, Sargent E H. Graded doping for enhanced colloidal quantum dot photovoltaics. Advanced Materials, 2013, 25(12): 1719–1723
CrossRef Pubmed Google scholar
[32]
Yuan M, Zhitomirsky D, Adinolfi V, Voznyy O, Kemp K W, Ning Z, Lan X, Xu J, Kim J Y, Dong H, Sargent E H. Doping control via molecularly engineered surface ligand coordination. Advanced Materials, 2013, 25(39): 5586–5592
CrossRef Pubmed Google scholar
[33]
Brongersma M L, Cui Y, Fan S. Light management for photovoltaics using high-index nanostructures. Nature Materials, 2014, 13(5): 451–460
CrossRef Pubmed Google scholar
[34]
Kramer I J, Zhitomirsky D, Bass J D, Rice P M, Topuria T, Krupp L, Thon S M, Ip A H, Debnath R, Kim H C, Sargent E H. Ordered nanopillar structured electrodes for depleted bulk heterojunction colloidal quantum dot solar cells. Advanced Materials, 2012, 24(17): 2315–2319
CrossRef Pubmed Google scholar
[35]
Lan X, Bai J, Masala S, Thon S M, Ren Y, Kramer I J, Hoogland S, Simchi A, Koleilat G I, Paz-Soldan D, Ning Z, Labelle A J, Kim J Y, Jabbour G, Sargent E H. Self-assembled, nanowire network electrodes for depleted bulk heterojunction solar cells. Advanced Materials, 2013, 25(12): 1769–1773
CrossRef Pubmed Google scholar
[36]
Adachi M M, Labelle A J, Thon S M, Lan X, Hoogland S, Sargent E H. Broadband solar absorption enhancement via periodic nanostructuring of electrodes. Scientific Reports, 2013, 3: 2928
CrossRef Pubmed Google scholar
[37]
Mahpeykar S M, Xiong Q, Wang X. Resonance-induced absorption enhancement in colloidal quantum dot solar cells using nanostructured electrodes. Optics Express, 2014, 22(S6 Suppl 6): A1576–A1588
[38]
Mihi A, Bernechea M, Kufer D, Konstantatos G. Coupling resonant modes of embedded dielectric microspheres in solution-processed solar cells. Advanced Optical Materials, 2013, 1(2): 139–143
[39]
Kim S, Kim J K, Gao J, Song J H, An H J, You T S, Lee T S, Jeong J R, Lee E S, Jeong J H, Beard M C, Jeong S. Lead sulfide nanocrystal quantum dot solar cells with trenched ZnO fabricated via nanoimprinting. ACS Applied Materials & Interfaces, 2013, 5(9): 3803–3808
CrossRef Pubmed Google scholar
[40]
Mihi A, Beck F J, Lasanta T, Rath A K, Konstantatos G. Imprinted electrodes for enhanced light trapping in solution processed solar cells. Advanced Materials, 2014, 26(3): 443–448
CrossRef Pubmed Google scholar
[41]
Paz-Soldan D, Lee A, Thon S M, Adachi M M, Dong H, Maraghechi P, Yuan M, Labelle A J, Hoogland S, Liu K, Kumacheva E, Sargent E H. Jointly tuned plasmonic-excitonic photovoltaics using nanoshells. Nano Letters, 2013, 13(4): 1502–1508
Pubmed
[42]
Beck F J, Stavrinadis A, Diedenhofen S L, Lasanta T, Konstantatos G. Surface plasmon polariton couplers for light trapping in thin-film absorbers and their application to colloidal quantum dot optoelectronics. ACS Photonics, 2014, 1(11): 1197–1205
CrossRef Google scholar
[43]
Koleilat G I, Kramer I J, Wong C T O, Thon S M, Labelle A J, Hoogland S, Sargent E H. Folded-light-path colloidal quantum dot solar cells. Scientific Reports, 2013, 3: 2166
CrossRef Pubmed Google scholar
[44]
Labelle A J, Thon S M, Masala S, Adachi M M, Dong H, Farahani M, Ip A H, Fratalocchi A, Sargent E H. Colloidal quantum dot solar cells exploiting hierarchical structuring. Nano Letters, 2015, 15(2): 1101–1108
CrossRef Pubmed Google scholar
[45]
Fischer A, Rollny L, Pan J, Carey G H, Thon S M, Hoogland S, Voznyy O, Zhitomirsky D, Kim J Y, Bakr O M, Sargent E H. Directly deposited quantum dot solids using a colloidally stable nanoparticle ink. Advanced Materials, 2013, 25(40): 5742–5749
CrossRef Pubmed Google scholar
[46]
Ning Z, Dong H, Zhang Q, Voznyy O, Sargent E H. Solar cells based on inks of n-type colloidal quantum dots. ACS Nano, 2014, 8(10): 10321–10327
CrossRef Pubmed Google scholar
[47]
Kramer I J, Moreno-Bautista G, Minor J C, Kopilovic D, Sargent E H. Colloidal quantum dot solar cells on curved and flexible substrates. Applied Physics Letters, 2014, 105(16): 163902
CrossRef Google scholar
[48]
Kramer I J, Minor J C, Moreno-Bautista G, Rollny L, Kanjanaboos P, Kopilovic D, Thon S M, Carey G H, Chou K W, Zhitomirsky D, Amassian A, Sargent E H. Efficient spray-coated colloidal quantum dot solar cells. Advanced Materials, 2015, 27(1): 116–121
CrossRef Pubmed Google scholar
[49]
NREL. The certified efficiency of CQD solar cells, 2015

Acknowledgements

X. Wang acknowledges Prof. Jiang Tang at Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, for his help and support during the manuscript preparation.

RIGHTS & PERMISSIONS

2015 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1702 KB)

Accesses

Citations

Detail

Sections
Recommended

/