Frontiers of Optoelectronics >
Recent advances in holographic data storage
Received date: 28 Jun 2014
Accepted date: 04 Sep 2014
Published date: 12 Dec 2014
Copyright
Nowadays, big-data centers still rely on hard drives. However, there is strong evidence that these surface-storage technologies are approaching fundamental limits that may be difficult to overcome, as ever-smaller bits become less thermally stable and harder to access. An intriguing approach for next generation data-storage is to use light to store information throughout the three-dimensional (3D) volume of a material. Holographic data storage (HDS) is poised to change the way we write and retrieve data forever. After many years of developing appropriate recording media and optical read–write architectures, this promising technology is now moving industriously to the market. In this paper, a review of the major achievements of HDS in the past ten years is presented and the key technique details are discussed. The author concludes that HDS technology is an attractive candidate for big data centers in the future. On the other hand, there are many challenges ahead for HDS technology to overcome in the years to come.
Hao RUAN . Recent advances in holographic data storage[J]. Frontiers of Optoelectronics, 2014 , 7(4) : 450 -466 . DOI: 10.1007/s12200-014-0458-7
1 |
Ruan H, Bu C Y. Multilayer optical storage for big data center: by pre-layered scheme. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2013, 8913: 891308
|
2 |
Gartner Inc. 2013,
|
3 |
Poess M, Nambiar R O. Energy cost, the key challenge of today’s data centers: a power consumption analysis of TPC-C results. In: Proceedings of the VLDB Endowment, 2008, 1(2): 1229–1240
|
4 |
Burr G W. Three-dimensional optical storage. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2003, 5225: 78
|
5 |
van Heerden P J. Theory of optical information storage in solids. Applied Optics, 1963, 2(4): 393–400
|
6 |
Anderson L K. Holographic optical memory for bulk data storage. Bell Laboratories Record, 1968, 45(10): 319–326
|
7 |
Staebler D L, Burke W J, Phillips W, Amodei J J. Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3. Applied Physics Letters, 1975, 26(4): 182–184
|
8 |
Tsunoda Y, Tatsuno K, Kataoka K, Takeda Y. Holographic video disk: an alternative approach to optical video disks. Applied Optics, 1976, 15(6): 1398–1403
|
9 |
Kubota K, Ono Y, Kondo M, Sugama S, Nishida N, Sakaguchi M. Holographic disk with high data transfer rate: its application to an audio response memory. Applied Optics, 1980, 19(6): 944–951
|
10 |
Heanue J F, Bashaw M C, Hesselink L. Volume holographic storage and retrieval of digital data. Science, 1994, 265(5173): 749–752
|
11 |
Coufal H J, Psaltis D, Sincerbox G. Holographic Data Storage. New York: Springer-Verlag, 2000
|
12 |
Curtis K, Dhar L, Hill A, Wilson W, Ayres M. Holographic Data Storage: From Theory to Practical Systems. Chichester, UK: John Wiley & Sons Ltd, 2011
|
13 |
Anderson K, Curtis K. Polytopic multiplexing. Optics Letters, 2004, 29(12): 1402–1404
|
14 |
Horimai H, Tan X. Collinear technology for a holographic versatile disk. Applied Optics, 2006, 45(5): 910–914
|
15 |
Eichler H J, Kuemmel P, Orlic S, Wappelt A. High-density disk storage by multiplexed microholograms. IEEE Journal on Selected Topics in Quantum Electronics, 1998, 4(5): 840–848
|
16 |
Yamatsu H, Ezura M, Kihara N. Study on Multiplexing methods for volume holographic memory. In: Proceedings of Joint International Symposium on Optical Memories and Optical Data Storage (ISOM/ODS), 2005, ThE1
|
17 |
Shimada K, Ide T, Shimano T, Anderson K, Curtis K. New optical architecture for holographic data storage system compatible with Blu-ray Disc™ system. Optical Engineering (Redondo Beach, Calif.), 2014, 53(2): 025102
|
18 |
Li H Y S, Psaltis D. Three-dimensional holographic disks. Applied Optics, 1994, 33(17): 3764–3774
|
19 |
Anderson K, Fotheringham E, Hill A, Sissom B, Curtis K. High-speed holographic data storage at 500 Gbits/in.2. SMPTE Motion Imaging Journal, 2006, 115(5–6): 200–203
|
20 |
Hoskins A, Ihas B, Anderson K, Curtis K. Monocular architecture. Japanese Journal of Applied Physics, 2008, 47(7): 5912–5914
|
21 |
Shimada K, Ishii T, Ide T, Hughes S, Hoskins A, Curtis K. High density recording using monocular architecture for 500 GB consumer system. In: Proceedings of Optical Data Storage Conference (ODS), 2009, TuC2
|
22 |
Ishii T, Hosaka M, Hoshizawa T, Yamaguchi M, Koga S, Tanaka A. Terabyte holographic recording with monocular architecture. In: Proceedings of IEEE International Conference on Consumer Electronics (ICCE), 2012, 427–428
|
23 |
Orlov S S, Phillips W, Bjornson E, Takashima Y, Sundaram P, Hesselink L, Okas R, Kwan D, Snyder R. High-transfer-rate high-capacity holographic disk data-storage system. Applied Optics, 2004, 43(25): 4902–4914
|
24 |
Saito K, Hormai H. Holographic 3-D disk using in-line face-to-face recording. In: Proceedings of Optical Data Storage Conference (ODS), Aspen, Colorado, 1998, 162–164
|
25 |
Tan X D, Horimai H. Collinear holographic information storage technologies and system. Acta Optica Sinica, 2006, 26(6): 827–830 (in Chinese)
|
26 |
Horimai H, Tan X D. Holographic information storage system: today and future. IEEE Transactions on Magnetics, 2007, 43(2): 943–947
|
27 |
Shimura T, Ichimura S, Fujimura R, Kuroda K, Tan X, Horimai H. Analysis of a collinear holographic storage system: introduction of pixel spread function. Optics Letters, 2006, 31(9): 1208–1210
|
28 |
Jia W, Chen Z, Wen F J, Zhou C, Chow Y T, Chung P S. Coaxial holographic encoding based on pure phase modulation. Applied Optics, 2011, 50(34): H10–H15
|
29 |
Jia W, Chen Z, Wen F J, Zhou C, Chow Y T, Chung P S. Single-beam data encoding using a holographic angular multiplexing technique. Applied Optics, 2011, 50(34): H30–H35
|
30 |
Nobukawa T, Nomura T. Coaxial holographic memory with designed reference pattern on the basis of Nyquist aperture for high density recording. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LD09
|
31 |
Liu J Q, Cao L C, Li C M Y, Li J H, He Q S, Jin G F. Crosstalk analysis of multilayer collinear volume holographic data storage. Proceedings of the Society for Photo-Instrumentation Engineers, 2013, 8847: 88470D
|
32 |
Yu Y W, Chen C Y, Sun C C. Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array. Optics Letters, 2010, 35(8): 1130–1132
|
33 |
Horimai H, Tan X, Li J. Collinear holography. Applied Optics, 2005, 44(13): 2575–2579
|
34 |
O’Callaghan M J, McNeil J R, Walker C, Handschy M. Spatial light modulators with integrated phase masks for holographic data storage. In: Proceedings of Optical Data Storage Conference (ODS), Montreal, Canada, 2006, 23–25
|
35 |
Ishioka K, Tanaka K, Kojima N, Fukumoto A, Sugiki M. Optical collinear holographic recording system using a blue laser and a random phase mask. In: Proceedings of Joint International Symposium on Optical Memories and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, 2005, ThD3
|
36 |
Lin X, Ke J, Wu A A, Xiao X, Tan X D. An effective phase modulation in the collinear holographic storage. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9006: 900607
|
37 |
Tanaka K, Mori H, Hara M, Hirooka K, Fukumoto A, Watanabe K. High density recording of 270 Gbit/in.2 in a coaxial holographic recording system. Japanese Journal of Applied Physics, 2008, 47(7): 5891–5894
|
38 |
Tanabe N, Yamatsu H, Kihara N. Experimental research on hologram number criterion for evaluating bit error rates of shift multiplexed holograms. In: Proceedings of Technical Digest of International Symposium on Optical Memories, 2004, 216–217
|
39 |
Tanaka K, Hara M, Tokuyama K, Hirooka K, Okamoto Y, Mori H, Fukumoto A, Okada K. 415 Gbit/in.2 recording in coaxial holographic storage using low-density parity-check codes. In: Proceedings of Optical Data Storage Conference, Lake Buena Vista, Florida, 2009, 64–66
|
40 |
Kimura K. Improvement of the optical signal-to-noise ratio in common-path holographic storage by use of a polarization-controlling media structure. Optics Letters, 2005, 30(8): 878–880
|
41 |
Orlic S, Rass J, Dietz E, Frohmann S. Multilayer recording in microholographic data storage. Journal of Optics, 2012, 14(7): 072401
|
42 |
McLeod R R, Daiber A J, McDonald M E, Robertson T L, Slagle T, Sochava S L, Hesselink L. Microholographic multilayer optical disk data storage. Applied Optics, 2005, 44(16): 3197–3207
|
43 |
Orlic S, Dietz E, Feid T, Frohmann S, Markoetter H, Rass J. Volumetric optical storage with microholograms. In: Proceedings of Optical Data Storage Topical Meeting, Lake Buena Vista, Florida, 2009, 1–3
|
44 |
Orlic S, Dietz E, Frohmann S, Rass J. Resolution-limited optical recording in 3D. Optics Express, 2011, 19(17): 16096–16105
|
45 |
Min C K, Kim D H, Jeon S, Park K S, Park Y P, Yang H, Park N C, Kim J. Analysis of inter-symbol-interference caused by shift misalignment of two objective lenses in high-NA micro holographic storage. Microsystem Technologies, 2010, 18(9–10): 1623–1631
|
46 |
Mikami H, Osawa K, Watanabe K. Optical phase multi-level recording in microhologram. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2010, 7730: 77301D
|
47 |
Mikami H, Osawa K, Tatsu E, Watanabe K. Experimental demonstration of optical phase multilevel recording in microhologram. Japanese Journal of Applied Physics, 2012, 51(8S2): 08JD01
|
48 |
Mikami H, Watanabe K. Microholographic optical data storage with spatial mode multiplexing. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LD02
|
49 |
Katayama R. Proposal for angular momentum multiplexing in microholographic recording. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LD11
|
50 |
Orlic S, Dietz E, Frohmann S, Gortner J, Mueller C. Microholographic multilayer recording at DVD density. In: Proceedings of Optical Data Storage Conference (ODS), 2007, MB4
|
51 |
Horigome T, Saito K, Miyamoto H, Hayashi K, Fujita G, Yamatsu H, Tanabe N, Kobayashi S, Uchiyama H. Recording capacity enhancement of micro-reflector recording. Japanese Journal of Applied Physics, 2008, 47(7): 5881–5884
|
52 |
Saito K, Kobayashi S. Analysis of micro-reflector 3-D optical disc recording. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2006, 6282: 628213
|
53 |
Boden E P, Chan K P, Dylov D V, Kim E M, Lorraine P W, McCloskey P J, Misner M J, Natarajan A, Ostroverkhov V, Pickett J E, Shi X, Takashima Y, Watkins V H. Recent progress in micro-holographic storage. In: Proceedings of Joint International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), 2011, OWA1
|
54 |
Sutter K, Hulliger J, Günter P. Photorefractive effects observed in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyanoquinodimethane. Solid State Communications, 1990, 74(8): 867–870
|
55 |
Bässler H. Charge transport in disordered organic photoconductors a Monte Carlo simulation study. Phyical Status Solidi B, 1993, 175(1): 15–56
|
56 |
Eickmans J, Bieringer T, Kostromine S, Berneth H, Thoma R. Photoaddressable polymers: a new class of materials for optical data storage and holographic memories. Japanese Journal of Applied Physics, 1999, 38(Part 1, No. 3B): 1835–1836
|
57 |
Loerincz E, Ujhelyi F, Sueto A, Szarvas G, Koppa P, Erdei G, Hvilsted S, Ramanujam P S, Richter P I. Rewritable holographic memory card system. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2000, 4090: 185–190
|
58 |
Lawrence B, Ostroverkhov V, Shi X, Longley K, Boden E P. Micro-holographic storage and threshold holographic materials. In: Proceedings of Joint International Symposium on Optical Memories and Optical Data Storage (ISOM/ODS), 2008, TD05–06
|
59 |
Lohr S. GE’s Breakthrough Can Put 100 DVDs on a Disc. The New York Times, 26. April2009
|
60 |
Close D H, Jacobson A D, Margerum J D, Brault R G, McClung F J. Hologram recording on photopolymer materials. Applied Physics Letters, 1969, 14(5): 159–160
|
61 |
Bruder F K, Hagen R, Rölle T, Weiser M S, Fäcke T. From the surface to volume: concepts for the next generation of optical-holographic data-storage materials. Angewandte Chemie International Edition, 2011, 50(20): 4552–4573
|
62 |
Guo J X, Gleeson M R, Sheridan J T. A review of the optimisation of photopolymer materials for holographic data storage. Physics Research International, 2012, 803439
|
63 |
Li X, Bullen C, Chon J W M, Evans R A, Gu M. Two-photon-induced three-dimensional optical data storage in CdS quantum-dot doped photopolymer. Applied Physics Letters, 2007, 90(16): 161116
|
64 |
Suzuki N, Tomita Y, Kojima T. Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films. Applied Physics Letters, 2002, 81(22): 4121–4123
|
65 |
Trentler T J, Boyd J E, Colvin V L. Epoxy resin photopolymer composites for volume holography. Chemistry of Materials, 2000, 12(5): 1431–1438
|
66 |
Gleeson M R, Sheridan J T, Bruder F K, Rölle T, Berneth H, Weiser M S, Fäcke T. Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model. Optics Express, 2011, 19(27): 26325–26342
|
67 |
Gleeson M R, Sabol D, Liu S, Close C E, Kelly J V, Sheridan J T. Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length. Journal of the Optical Society of America B: Optical Physics, 2008, 25(3): 396–406
|
68 |
Guo J, Gleeson M R, Liu S, Sheridan J T. Non-local spatial frequency response of photopolymer materials containing chain transfer agents: part II. experimental results. Journal of Optics, 2011, 13(9): 095602
|
69 |
Liu X, Tomita Y, Oshima J, Chikama K, Matsubara K, Nakashima T, Kawai T. Holographic assembly of semiconductor CdSe quantum dots in polymer for volume Bragg grating structures with diffraction efficiency near 100%. Applied Physics Letters, 2009, 95(26): 261109
|
70 |
Krul L P, Matusevich V, Hoff D, Kowarschik R, Matusevich Y I, Butovskaya G V, Murashko E A. Modified polymethylmethacrylate as a base for thermostable optical recording media. Optics Express, 2007, 15(14): 8543–8549
|
71 |
Waldman D A, Li H Y S, Horner M G. Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material. Journal of Imaging Science and Technology, 1997, 41(5): 497–514
|
72 |
Waldman D A, Butler C J, Raguin D H. CROP holographic storage media for optical data storage at greater than 100 bits/µm2. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2003, 5216: 10
|
73 |
Dhar L, Hale A, Katz H E, Schilling M, Schnoes M G, Schilling F C. Recording media that exhibit high dynamic range for digital holographic data storage. Optics Letters, 1999, 24(7): 487–489
|
74 |
Suzuki N, Tomita Y, Ohmori K, Hidaka M, Chikama K. Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording. Optics Express, 2006, 14(26): 12712–12719
|
75 |
Shelby R M, Waldman D A, Ingwall R T. Distortions in pixel-matched holographic data storage due to lateral dimensional change of photopolymer storage media. Optics Letters, 2000, 25(10): 713–715
|
76 |
Dhar L, Curtis K, Tackitt M, Schilling M, Campbell S, Wilson W, Hill A, Boyd C, Levinos N, Harris A. Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems. Optics Letters, 1998, 23(21): 1710–1712
|
77 |
Aprilis Inc.
|
78 |
Anderson K, Ayres M, Sissom B, Askham F. Holographic data storage: rebirthing a commercialization effort. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9006: 90060C
|
79 |
Askham F U S. Patents, 8323854, 2012
|
80 |
Park K, Kim B S, Lee J. A 6/9 four-ary modulation code for four-level holographic data storage. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LE05
|
81 |
Heanue J F, Bashaw M C, Hesselink L. Channel codes for digital holographic data storage. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 1995, 12(11): 2432–2439
|
82 |
Vadde V, Kumar B V K V. Channel modeling and estimation for intrapage equalization in pixel-matched volume holographic data storage. Applied Optics, 1999, 38(20): 4374–4386
|
83 |
Heanue J F, Gürkan K, Hesselink L. Signal detection for page-accessoptical memories with intersymbol interference. Applied Optics, 1996, 35(14): 2431–2438
|
84 |
Chugg K M, Chen X P, Neifeld M A. Two-dimensional equalization in coherent and incoherent page-oriented optical memory. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 1999, 16(3): 549–562
|
85 |
Keskinoz M, Kumar B V K V. Discrete magnitude-squared channel modeling, equalization, and detection for volume holographic storage channels. Applied Optics, 2004, 43(6): 1368–1378
|
86 |
Kim T, Kong G, Choi S. Two-dimensional equalization using bilinear recursive polynomial model for holographic data storage systems. Japanese Journal of Applied Physics, 2012, 51(8S2): 08JD05
|
87 |
Srinivasa S G. Constrained Coding and Signal Processing for Holography. PhD Thesis, Georgia Institute of Technology, 2006
|
88 |
Chen Y T, Ou-Yang M, Lee C C. A recognition method in holographic data storage system by using structural similarity. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2013, 8855: 88550J
|
89 |
Chen C Y, Chiueh T D. Hardware implementation of pixel detection in gray-scale holographic data storage systems. Applied Optics, 2012, 51(34): 8228–8235
|
90 |
Kong G, Choi S. Effective two-dimensional partial response maximum likelihood detection scheme for holographic data storage systems. Japanese Journal of Applied Physics, 2012, 51(8S2): 08JB06
|
91 |
Koo K, Kim S Y, Kim S W. Modified two-dimensional soft output Viterbi algorithm with two-dimensional partial response target for holographic data storage. Japanese Journal of Applied Physics, 2012, 51(8): 08JB03
|
92 |
Koo K, Kim S Y, Jeong J J, Kim S W. Two-dimensional soft output Viterbi algorithm with a variable reliability factor for holographic data storage. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LE03
|
93 |
Burr G W. Holographic data storage with arbitrarily misaligned data pages. Optics Letters, 2002, 27(7): 542–544
|
94 |
Chen C Y, Fu C C, Chiueh T D. Low-complexity pixel detection for images with misalignment and interpixel interference in holographic data storage. Applied Optics, 2008, 47(36): 6784–6795
|
95 |
Gu H R, Cao L C, He Q S, Jin G F. Compensation for pixel mismatch based on a three-pixel model in volume holographic data storage. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2010, 7848: 78480
|
96 |
Ayres M, Hoskins A, Curtis K. Image oversampling for page-oriented optical data storage. Applied Optics, 2006, 45(11): 2459–2464
|
97 |
Ayres M R U S. Patents, 7623279, 2009
|
98 |
Ashley J J, Marcus B H. Two-dimensional low-pass filtering codes. IEEE Transactions on Communications, 1998, 46(6): 724–727
|
99 |
Immink K A S, Siegel P H, Wolf J K. Codes for digital recorders. IEEE Transactions on Information Theory, 1998, 44(6): 2260–2299
|
100 |
Srinivasa S G, McLaughlin S W. Enumeration algorithms for constructing (d(1), infinity, d(2), infinity) run length limited arrays: capacity estimates and coding schemes. In: Proceedings of IEEE Information Theory Workshop, 2004, 141–146
|
101 |
Kim S Y, Lee J. A simple 2/3 modulation code for multi-level holographic data storage. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LE04
|
102 |
Pishro-Nik H, Rahnavard N, Ha J, Fekri F, Adibi A. Low-density parity-check codes for volume holographic memory systems. Applied Optics, 2003, 42(5): 861–870
|
103 |
Kim J, Lee J. Simplified decoding of trellis-based error-correcting modulation codes using the M-algorithm for holographic data storage. Japanese Journal of Applied Physics, 2012, 51(8S2): 08JD02
|
104 |
Gallager R G. Low-density parity-check codes. I.R.E. Transactions on Information Theory, 1962, 8(1): 21–28
|
105 |
MacKay D J C, Neal R M. Near Shannon limit performance of low density parity check codes. Electronics Letters, 1996, 32(18): 1645–1646
|
106 |
Yoon P, Chung B, Kim H, Park J, Park G. Low-density parity-check code for holographic data storage system with balanced modulation code. Japanese Journal of Applied Physics, 2008, 47(7): 5981–5988
|
107 |
Ungerboeck G. Channel coding with multilevel/phase signals. IEEE Transactions on Information Theory, 1982, 28(1): 55–67
|
108 |
Kim J, Wee J K, Lee J. Error correcting 4/6 modulation codes for holographic data storage. Japanese Journal of Applied Physics, 2010, 49(8): 08KB04
|
109 |
Kim Y, Kong G, Choi S. Error correcting capable 2/4 modulation code using trellis coded modulation in holographic data storage. Japanese Journal of Applied Physics, 2012, 51(8S2): 08JD08
|
110 |
Imai H. Two-dimensional fire codes. IEEE Transactions on Information Theory, 1973, 19(6): 796–806
|
111 |
Abdel-Ghaffar K A S, McEliece R J, van Tilborg H C K. Two-dimensional burst identification codes and their use in burst correction. IEEE Transactions on Information Theory, 1988, 34(3): 494–504
|
112 |
Blaum M, Bruck J, Vardy A. Interleaving schemes for multidimensional cluster errors. IEEE Transactions on Information Theory, 1998, 44(2): 730–743
|
113 |
Etzion T, Vardy A. Two-dimensional interleaving schemes with repetitions: constructions and bounds. IEEE Transactions on Information Theory, 2002, 48(2): 428–457
|
114 |
Jiang A A, Bruck J. Multicluster interleaving on paths and cycles. IEEE Transactions on Information Theory, 2005, 51(2): 597–611
|
115 |
Gu H R, Cao L C, He Q S, Jin G F. Reed-Solomon volumetric coding with matched interleaving for holographic data storage. Japanese Journal of Applied Physics, 2012, 51(8R): 082502
|
/
〈 | 〉 |