Recent advances in holographic data storage
Hao RUAN
Recent advances in holographic data storage
Nowadays, big-data centers still rely on hard drives. However, there is strong evidence that these surface-storage technologies are approaching fundamental limits that may be difficult to overcome, as ever-smaller bits become less thermally stable and harder to access. An intriguing approach for next generation data-storage is to use light to store information throughout the three-dimensional (3D) volume of a material. Holographic data storage (HDS) is poised to change the way we write and retrieve data forever. After many years of developing appropriate recording media and optical read–write architectures, this promising technology is now moving industriously to the market. In this paper, a review of the major achievements of HDS in the past ten years is presented and the key technique details are discussed. The author concludes that HDS technology is an attractive candidate for big data centers in the future. On the other hand, there are many challenges ahead for HDS technology to overcome in the years to come.
holographic data storage (HDS) / microholography / photopolymer / channel code / signal detection / big data center
[1] |
Ruan H, Bu C Y. Multilayer optical storage for big data center: by pre-layered scheme. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2013, 8913: 891308
CrossRef
Google scholar
|
[2] |
Gartner Inc. 2013,
|
[3] |
Poess M, Nambiar R O. Energy cost, the key challenge of today’s data centers: a power consumption analysis of TPC-C results. In: Proceedings of the VLDB Endowment, 2008, 1(2): 1229–1240
CrossRef
Google scholar
|
[4] |
Burr G W. Three-dimensional optical storage. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2003, 5225: 78
CrossRef
Google scholar
|
[5] |
van Heerden P J. Theory of optical information storage in solids. Applied Optics, 1963, 2(4): 393–400
CrossRef
Google scholar
|
[6] |
Anderson L K. Holographic optical memory for bulk data storage. Bell Laboratories Record, 1968, 45(10): 319–326
|
[7] |
Staebler D L, Burke W J, Phillips W, Amodei J J. Multiple storage and erasure of fixed holograms in Fe-doped LiNbO3. Applied Physics Letters, 1975, 26(4): 182–184
CrossRef
Google scholar
|
[8] |
Tsunoda Y, Tatsuno K, Kataoka K, Takeda Y. Holographic video disk: an alternative approach to optical video disks. Applied Optics, 1976, 15(6): 1398–1403
CrossRef
Pubmed
Google scholar
|
[9] |
Kubota K, Ono Y, Kondo M, Sugama S, Nishida N, Sakaguchi M. Holographic disk with high data transfer rate: its application to an audio response memory. Applied Optics, 1980, 19(6): 944–951
CrossRef
Pubmed
Google scholar
|
[10] |
Heanue J F, Bashaw M C, Hesselink L. Volume holographic storage and retrieval of digital data. Science, 1994, 265(5173): 749–752
CrossRef
Pubmed
Google scholar
|
[11] |
Coufal H J, Psaltis D, Sincerbox G. Holographic Data Storage. New York: Springer-Verlag, 2000
|
[12] |
Curtis K, Dhar L, Hill A, Wilson W, Ayres M. Holographic Data Storage: From Theory to Practical Systems. Chichester, UK: John Wiley & Sons Ltd, 2011
|
[13] |
Anderson K, Curtis K. Polytopic multiplexing. Optics Letters, 2004, 29(12): 1402–1404
CrossRef
Pubmed
Google scholar
|
[14] |
Horimai H, Tan X. Collinear technology for a holographic versatile disk. Applied Optics, 2006, 45(5): 910–914
CrossRef
Pubmed
Google scholar
|
[15] |
Eichler H J, Kuemmel P, Orlic S, Wappelt A. High-density disk storage by multiplexed microholograms. IEEE Journal on Selected Topics in Quantum Electronics, 1998, 4(5): 840–848
CrossRef
Google scholar
|
[16] |
Yamatsu H, Ezura M, Kihara N. Study on Multiplexing methods for volume holographic memory. In: Proceedings of Joint International Symposium on Optical Memories and Optical Data Storage (ISOM/ODS), 2005, ThE1
|
[17] |
Shimada K, Ide T, Shimano T, Anderson K, Curtis K. New optical architecture for holographic data storage system compatible with Blu-ray Disc™ system. Optical Engineering (Redondo Beach, Calif.), 2014, 53(2): 025102
CrossRef
Google scholar
|
[18] |
Li H Y S, Psaltis D. Three-dimensional holographic disks. Applied Optics, 1994, 33(17): 3764–3774
CrossRef
Pubmed
Google scholar
|
[19] |
Anderson K, Fotheringham E, Hill A, Sissom B, Curtis K. High-speed holographic data storage at 500 Gbits/in.2. SMPTE Motion Imaging Journal, 2006, 115(5–6): 200–203
CrossRef
Google scholar
|
[20] |
Hoskins A, Ihas B, Anderson K, Curtis K. Monocular architecture. Japanese Journal of Applied Physics, 2008, 47(7): 5912–5914
CrossRef
Google scholar
|
[21] |
Shimada K, Ishii T, Ide T, Hughes S, Hoskins A, Curtis K. High density recording using monocular architecture for 500 GB consumer system. In: Proceedings of Optical Data Storage Conference (ODS), 2009, TuC2
|
[22] |
Ishii T, Hosaka M, Hoshizawa T, Yamaguchi M, Koga S, Tanaka A. Terabyte holographic recording with monocular architecture. In: Proceedings of IEEE International Conference on Consumer Electronics (ICCE), 2012, 427–428
|
[23] |
Orlov S S, Phillips W, Bjornson E, Takashima Y, Sundaram P, Hesselink L, Okas R, Kwan D, Snyder R. High-transfer-rate high-capacity holographic disk data-storage system. Applied Optics, 2004, 43(25): 4902–4914
CrossRef
Pubmed
Google scholar
|
[24] |
Saito K, Hormai H. Holographic 3-D disk using in-line face-to-face recording. In: Proceedings of Optical Data Storage Conference (ODS), Aspen, Colorado, 1998, 162–164
|
[25] |
Tan X D, Horimai H. Collinear holographic information storage technologies and system. Acta Optica Sinica, 2006, 26(6): 827–830 (in Chinese)
|
[26] |
Horimai H, Tan X D. Holographic information storage system: today and future. IEEE Transactions on Magnetics, 2007, 43(2): 943–947
CrossRef
Google scholar
|
[27] |
Shimura T, Ichimura S, Fujimura R, Kuroda K, Tan X, Horimai H. Analysis of a collinear holographic storage system: introduction of pixel spread function. Optics Letters, 2006, 31(9): 1208–1210
CrossRef
Pubmed
Google scholar
|
[28] |
Jia W, Chen Z, Wen F J, Zhou C, Chow Y T, Chung P S. Coaxial holographic encoding based on pure phase modulation. Applied Optics, 2011, 50(34): H10–H15
CrossRef
Pubmed
Google scholar
|
[29] |
Jia W, Chen Z, Wen F J, Zhou C, Chow Y T, Chung P S. Single-beam data encoding using a holographic angular multiplexing technique. Applied Optics, 2011, 50(34): H30–H35
CrossRef
Pubmed
Google scholar
|
[30] |
Nobukawa T, Nomura T. Coaxial holographic memory with designed reference pattern on the basis of Nyquist aperture for high density recording. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LD09
CrossRef
Google scholar
|
[31] |
Liu J Q, Cao L C, Li C M Y, Li J H, He Q S, Jin G F. Crosstalk analysis of multilayer collinear volume holographic data storage. Proceedings of the Society for Photo-Instrumentation Engineers, 2013, 8847: 88470D
CrossRef
Google scholar
|
[32] |
Yu Y W, Chen C Y, Sun C C. Increase of signal-to-noise ratio of a collinear holographic storage system with reference modulated by a ring lens array. Optics Letters, 2010, 35(8): 1130–1132
CrossRef
Pubmed
Google scholar
|
[33] |
Horimai H, Tan X, Li J. Collinear holography. Applied Optics, 2005, 44(13): 2575–2579
CrossRef
Pubmed
Google scholar
|
[34] |
O’Callaghan M J, McNeil J R, Walker C, Handschy M. Spatial light modulators with integrated phase masks for holographic data storage. In: Proceedings of Optical Data Storage Conference (ODS), Montreal, Canada, 2006, 23–25
|
[35] |
Ishioka K, Tanaka K, Kojima N, Fukumoto A, Sugiki M. Optical collinear holographic recording system using a blue laser and a random phase mask. In: Proceedings of Joint International Symposium on Optical Memories and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, 2005, ThD3
|
[36] |
Lin X, Ke J, Wu A A, Xiao X, Tan X D. An effective phase modulation in the collinear holographic storage. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9006: 900607
CrossRef
Google scholar
|
[37] |
Tanaka K, Mori H, Hara M, Hirooka K, Fukumoto A, Watanabe K. High density recording of 270 Gbit/in.2 in a coaxial holographic recording system. Japanese Journal of Applied Physics, 2008, 47(7): 5891–5894
CrossRef
Google scholar
|
[38] |
Tanabe N, Yamatsu H, Kihara N. Experimental research on hologram number criterion for evaluating bit error rates of shift multiplexed holograms. In: Proceedings of Technical Digest of International Symposium on Optical Memories, 2004, 216–217
|
[39] |
Tanaka K, Hara M, Tokuyama K, Hirooka K, Okamoto Y, Mori H, Fukumoto A, Okada K. 415 Gbit/in.2 recording in coaxial holographic storage using low-density parity-check codes. In: Proceedings of Optical Data Storage Conference, Lake Buena Vista, Florida, 2009, 64–66
|
[40] |
Kimura K. Improvement of the optical signal-to-noise ratio in common-path holographic storage by use of a polarization-controlling media structure. Optics Letters, 2005, 30(8): 878–880
CrossRef
Pubmed
Google scholar
|
[41] |
Orlic S, Rass J, Dietz E, Frohmann S. Multilayer recording in microholographic data storage. Journal of Optics, 2012, 14(7): 072401
CrossRef
Google scholar
|
[42] |
McLeod R R, Daiber A J, McDonald M E, Robertson T L, Slagle T, Sochava S L, Hesselink L. Microholographic multilayer optical disk data storage. Applied Optics, 2005, 44(16): 3197–3207
CrossRef
Pubmed
Google scholar
|
[43] |
Orlic S, Dietz E, Feid T, Frohmann S, Markoetter H, Rass J. Volumetric optical storage with microholograms. In: Proceedings of Optical Data Storage Topical Meeting, Lake Buena Vista, Florida, 2009, 1–3
|
[44] |
Orlic S, Dietz E, Frohmann S, Rass J. Resolution-limited optical recording in 3D. Optics Express, 2011, 19(17): 16096–16105
CrossRef
Pubmed
Google scholar
|
[45] |
Min C K, Kim D H, Jeon S, Park K S, Park Y P, Yang H, Park N C, Kim J. Analysis of inter-symbol-interference caused by shift misalignment of two objective lenses in high-NA micro holographic storage. Microsystem Technologies, 2010, 18(9–10): 1623–1631
|
[46] |
Mikami H, Osawa K, Watanabe K. Optical phase multi-level recording in microhologram. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2010, 7730: 77301D
CrossRef
Google scholar
|
[47] |
Mikami H, Osawa K, Tatsu E, Watanabe K. Experimental demonstration of optical phase multilevel recording in microhologram. Japanese Journal of Applied Physics, 2012, 51(8S2): 08JD01
CrossRef
Google scholar
|
[48] |
Mikami H, Watanabe K. Microholographic optical data storage with spatial mode multiplexing. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LD02
CrossRef
Google scholar
|
[49] |
Katayama R. Proposal for angular momentum multiplexing in microholographic recording. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LD11
CrossRef
Google scholar
|
[50] |
Orlic S, Dietz E, Frohmann S, Gortner J, Mueller C. Microholographic multilayer recording at DVD density. In: Proceedings of Optical Data Storage Conference (ODS), 2007, MB4
|
[51] |
Horigome T, Saito K, Miyamoto H, Hayashi K, Fujita G, Yamatsu H, Tanabe N, Kobayashi S, Uchiyama H. Recording capacity enhancement of micro-reflector recording. Japanese Journal of Applied Physics, 2008, 47(7): 5881–5884
CrossRef
Google scholar
|
[52] |
Saito K, Kobayashi S. Analysis of micro-reflector 3-D optical disc recording. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2006, 6282: 628213
CrossRef
Google scholar
|
[53] |
Boden E P, Chan K P, Dylov D V, Kim E M, Lorraine P W, McCloskey P J, Misner M J, Natarajan A, Ostroverkhov V, Pickett J E, Shi X, Takashima Y, Watkins V H. Recent progress in micro-holographic storage. In: Proceedings of Joint International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), 2011, OWA1
|
[54] |
Sutter K, Hulliger J, Günter P. Photorefractive effects observed in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyanoquinodimethane. Solid State Communications, 1990, 74(8): 867–870
CrossRef
Google scholar
|
[55] |
Bässler H. Charge transport in disordered organic photoconductors a Monte Carlo simulation study. Phyical Status Solidi B, 1993, 175(1): 15–56
CrossRef
Google scholar
|
[56] |
Eickmans J, Bieringer T, Kostromine S, Berneth H, Thoma R. Photoaddressable polymers: a new class of materials for optical data storage and holographic memories. Japanese Journal of Applied Physics, 1999, 38(Part 1, No. 3B): 1835–1836
CrossRef
Google scholar
|
[57] |
Loerincz E, Ujhelyi F, Sueto A, Szarvas G, Koppa P, Erdei G, Hvilsted S, Ramanujam P S, Richter P I. Rewritable holographic memory card system. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2000, 4090: 185–190
CrossRef
Google scholar
|
[58] |
Lawrence B, Ostroverkhov V, Shi X, Longley K, Boden E P. Micro-holographic storage and threshold holographic materials. In: Proceedings of Joint International Symposium on Optical Memories and Optical Data Storage (ISOM/ODS), 2008, TD05–06
|
[59] |
Lohr S. GE’s Breakthrough Can Put 100 DVDs on a Disc. The New York Times, 26. April2009
|
[60] |
Close D H, Jacobson A D, Margerum J D, Brault R G, McClung F J. Hologram recording on photopolymer materials. Applied Physics Letters, 1969, 14(5): 159–160
CrossRef
Google scholar
|
[61] |
Bruder F K, Hagen R, Rölle T, Weiser M S, Fäcke T. From the surface to volume: concepts for the next generation of optical-holographic data-storage materials. Angewandte Chemie International Edition, 2011, 50(20): 4552–4573
CrossRef
Pubmed
Google scholar
|
[62] |
Guo J X, Gleeson M R, Sheridan J T. A review of the optimisation of photopolymer materials for holographic data storage. Physics Research International, 2012, 803439
CrossRef
Google scholar
|
[63] |
Li X, Bullen C, Chon J W M, Evans R A, Gu M. Two-photon-induced three-dimensional optical data storage in CdS quantum-dot doped photopolymer. Applied Physics Letters, 2007, 90(16): 161116
CrossRef
Google scholar
|
[64] |
Suzuki N, Tomita Y, Kojima T. Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films. Applied Physics Letters, 2002, 81(22): 4121–4123
CrossRef
Google scholar
|
[65] |
Trentler T J, Boyd J E, Colvin V L. Epoxy resin photopolymer composites for volume holography. Chemistry of Materials, 2000, 12(5): 1431–1438
CrossRef
Google scholar
|
[66] |
Gleeson M R, Sheridan J T, Bruder F K, Rölle T, Berneth H, Weiser M S, Fäcke T. Comparison of a new self developing photopolymer with AA/PVA based photopolymer utilizing the NPDD model. Optics Express, 2011, 19(27): 26325–26342
CrossRef
Pubmed
Google scholar
|
[67] |
Gleeson M R, Sabol D, Liu S, Close C E, Kelly J V, Sheridan J T. Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length. Journal of the Optical Society of America B: Optical Physics, 2008, 25(3): 396–406
CrossRef
Google scholar
|
[68] |
Guo J, Gleeson M R, Liu S, Sheridan J T. Non-local spatial frequency response of photopolymer materials containing chain transfer agents: part II. experimental results. Journal of Optics, 2011, 13(9): 095602
CrossRef
Google scholar
|
[69] |
Liu X, Tomita Y, Oshima J, Chikama K, Matsubara K, Nakashima T, Kawai T. Holographic assembly of semiconductor CdSe quantum dots in polymer for volume Bragg grating structures with diffraction efficiency near 100%. Applied Physics Letters, 2009, 95(26): 261109
CrossRef
Google scholar
|
[70] |
Krul L P, Matusevich V, Hoff D, Kowarschik R, Matusevich Y I, Butovskaya G V, Murashko E A. Modified polymethylmethacrylate as a base for thermostable optical recording media. Optics Express, 2007, 15(14): 8543–8549
CrossRef
Pubmed
Google scholar
|
[71] |
Waldman D A, Li H Y S, Horner M G. Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material. Journal of Imaging Science and Technology, 1997, 41(5): 497–514
|
[72] |
Waldman D A, Butler C J, Raguin D H. CROP holographic storage media for optical data storage at greater than 100 bits/µm2. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2003, 5216: 10
CrossRef
Google scholar
|
[73] |
Dhar L, Hale A, Katz H E, Schilling M, Schnoes M G, Schilling F C. Recording media that exhibit high dynamic range for digital holographic data storage. Optics Letters, 1999, 24(7): 487–489
CrossRef
Pubmed
Google scholar
|
[74] |
Suzuki N, Tomita Y, Ohmori K, Hidaka M, Chikama K. Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording. Optics Express, 2006, 14(26): 12712–12719
CrossRef
Pubmed
Google scholar
|
[75] |
Shelby R M, Waldman D A, Ingwall R T. Distortions in pixel-matched holographic data storage due to lateral dimensional change of photopolymer storage media. Optics Letters, 2000, 25(10): 713–715
CrossRef
Pubmed
Google scholar
|
[76] |
Dhar L, Curtis K, Tackitt M, Schilling M, Campbell S, Wilson W, Hill A, Boyd C, Levinos N, Harris A. Holographic storage of multiple high-capacity digital data pages in thick photopolymer systems. Optics Letters, 1998, 23(21): 1710–1712
CrossRef
Pubmed
Google scholar
|
[77] |
Aprilis Inc.
|
[78] |
Anderson K, Ayres M, Sissom B, Askham F. Holographic data storage: rebirthing a commercialization effort. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2014, 9006: 90060C
CrossRef
Google scholar
|
[79] |
Askham F U S. Patents, 8323854, 2012
|
[80] |
Park K, Kim B S, Lee J. A 6/9 four-ary modulation code for four-level holographic data storage. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LE05
CrossRef
Google scholar
|
[81] |
Heanue J F, Bashaw M C, Hesselink L. Channel codes for digital holographic data storage. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 1995, 12(11): 2432–2439
CrossRef
Google scholar
|
[82] |
Vadde V, Kumar B V K V. Channel modeling and estimation for intrapage equalization in pixel-matched volume holographic data storage. Applied Optics, 1999, 38(20): 4374–4386
CrossRef
Pubmed
Google scholar
|
[83] |
Heanue J F, Gürkan K, Hesselink L. Signal detection for page-accessoptical memories with intersymbol interference. Applied Optics, 1996, 35(14): 2431–2438
CrossRef
Pubmed
Google scholar
|
[84] |
Chugg K M, Chen X P, Neifeld M A. Two-dimensional equalization in coherent and incoherent page-oriented optical memory. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 1999, 16(3): 549–562
CrossRef
Google scholar
|
[85] |
Keskinoz M, Kumar B V K V. Discrete magnitude-squared channel modeling, equalization, and detection for volume holographic storage channels. Applied Optics, 2004, 43(6): 1368–1378
CrossRef
Pubmed
Google scholar
|
[86] |
Kim T, Kong G, Choi S. Two-dimensional equalization using bilinear recursive polynomial model for holographic data storage systems. Japanese Journal of Applied Physics, 2012, 51(8S2): 08JD05
CrossRef
Google scholar
|
[87] |
Srinivasa S G. Constrained Coding and Signal Processing for Holography. PhD Thesis, Georgia Institute of Technology, 2006
|
[88] |
Chen Y T, Ou-Yang M, Lee C C. A recognition method in holographic data storage system by using structural similarity. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2013, 8855: 88550J
CrossRef
Google scholar
|
[89] |
Chen C Y, Chiueh T D. Hardware implementation of pixel detection in gray-scale holographic data storage systems. Applied Optics, 2012, 51(34): 8228–8235
CrossRef
Pubmed
Google scholar
|
[90] |
Kong G, Choi S. Effective two-dimensional partial response maximum likelihood detection scheme for holographic data storage systems. Japanese Journal of Applied Physics, 2012, 51(8S2): 08JB06
CrossRef
Google scholar
|
[91] |
Koo K, Kim S Y, Kim S W. Modified two-dimensional soft output Viterbi algorithm with two-dimensional partial response target for holographic data storage. Japanese Journal of Applied Physics, 2012, 51(8): 08JB03
|
[92] |
Koo K, Kim S Y, Jeong J J, Kim S W. Two-dimensional soft output Viterbi algorithm with a variable reliability factor for holographic data storage. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LE03
CrossRef
Google scholar
|
[93] |
Burr G W. Holographic data storage with arbitrarily misaligned data pages. Optics Letters, 2002, 27(7): 542–544
CrossRef
Pubmed
Google scholar
|
[94] |
Chen C Y, Fu C C, Chiueh T D. Low-complexity pixel detection for images with misalignment and interpixel interference in holographic data storage. Applied Optics, 2008, 47(36): 6784–6795
CrossRef
Pubmed
Google scholar
|
[95] |
Gu H R, Cao L C, He Q S, Jin G F. Compensation for pixel mismatch based on a three-pixel model in volume holographic data storage. In: Proceedings of the Society for Photo-Instrumentation Engineers, 2010, 7848: 78480
CrossRef
Google scholar
|
[96] |
Ayres M, Hoskins A, Curtis K. Image oversampling for page-oriented optical data storage. Applied Optics, 2006, 45(11): 2459–2464
CrossRef
Pubmed
Google scholar
|
[97] |
Ayres M R U S. Patents, 7623279, 2009
|
[98] |
Ashley J J, Marcus B H. Two-dimensional low-pass filtering codes. IEEE Transactions on Communications, 1998, 46(6): 724–727
CrossRef
Google scholar
|
[99] |
Immink K A S, Siegel P H, Wolf J K. Codes for digital recorders. IEEE Transactions on Information Theory, 1998, 44(6): 2260–2299
CrossRef
Google scholar
|
[100] |
Srinivasa S G, McLaughlin S W. Enumeration algorithms for constructing (d(1), infinity, d(2), infinity) run length limited arrays: capacity estimates and coding schemes. In: Proceedings of IEEE Information Theory Workshop, 2004, 141–146
|
[101] |
Kim S Y, Lee J. A simple 2/3 modulation code for multi-level holographic data storage. Japanese Journal of Applied Physics, 2013, 52(9S2): 09LE04
CrossRef
Google scholar
|
[102] |
Pishro-Nik H, Rahnavard N, Ha J, Fekri F, Adibi A. Low-density parity-check codes for volume holographic memory systems. Applied Optics, 2003, 42(5): 861–870
CrossRef
Pubmed
Google scholar
|
[103] |
Kim J, Lee J. Simplified decoding of trellis-based error-correcting modulation codes using the M-algorithm for holographic data storage. Japanese Journal of Applied Physics, 2012, 51(8S2): 08JD02
CrossRef
Google scholar
|
[104] |
Gallager R G. Low-density parity-check codes. I.R.E. Transactions on Information Theory, 1962, 8(1): 21–28
CrossRef
Google scholar
|
[105] |
MacKay D J C, Neal R M. Near Shannon limit performance of low density parity check codes. Electronics Letters, 1996, 32(18): 1645–1646
CrossRef
Google scholar
|
[106] |
Yoon P, Chung B, Kim H, Park J, Park G. Low-density parity-check code for holographic data storage system with balanced modulation code. Japanese Journal of Applied Physics, 2008, 47(7): 5981–5988
CrossRef
Google scholar
|
[107] |
Ungerboeck G. Channel coding with multilevel/phase signals. IEEE Transactions on Information Theory, 1982, 28(1): 55–67
CrossRef
Google scholar
|
[108] |
Kim J, Wee J K, Lee J. Error correcting 4/6 modulation codes for holographic data storage. Japanese Journal of Applied Physics, 2010, 49(8): 08KB04
CrossRef
Google scholar
|
[109] |
Kim Y, Kong G, Choi S. Error correcting capable 2/4 modulation code using trellis coded modulation in holographic data storage. Japanese Journal of Applied Physics, 2012, 51(8S2): 08JD08
CrossRef
Google scholar
|
[110] |
Imai H. Two-dimensional fire codes. IEEE Transactions on Information Theory, 1973, 19(6): 796–806
CrossRef
Google scholar
|
[111] |
Abdel-Ghaffar K A S, McEliece R J, van Tilborg H C K. Two-dimensional burst identification codes and their use in burst correction. IEEE Transactions on Information Theory, 1988, 34(3): 494–504
CrossRef
Google scholar
|
[112] |
Blaum M, Bruck J, Vardy A. Interleaving schemes for multidimensional cluster errors. IEEE Transactions on Information Theory, 1998, 44(2): 730–743
CrossRef
Google scholar
|
[113] |
Etzion T, Vardy A. Two-dimensional interleaving schemes with repetitions: constructions and bounds. IEEE Transactions on Information Theory, 2002, 48(2): 428–457
CrossRef
Google scholar
|
[114] |
Jiang A A, Bruck J. Multicluster interleaving on paths and cycles. IEEE Transactions on Information Theory, 2005, 51(2): 597–611
CrossRef
Google scholar
|
[115] |
Gu H R, Cao L C, He Q S, Jin G F. Reed-Solomon volumetric coding with matched interleaving for holographic data storage. Japanese Journal of Applied Physics, 2012, 51(8R): 082502
CrossRef
Google scholar
|
/
〈 | 〉 |