Frontiers of Optoelectronics >
Preparation and characterization of high uniformity zinc oxide nanosheets
Received date: 17 Dec 2013
Accepted date: 24 Feb 2014
Published date: 12 Dec 2014
Copyright
This paper reports a synthesis of zinc oxide (ZnO) nanosheets by hydrothermal method. ZnO nanosheets on Al substrate were generated by hydrothermal synthesis with zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetramine (HMT) as a research system, which were controlled conditions of the reaction. The energy dispersive spectroscopy (EDS), scanning electron microscope (SEM) and transmission electron microscopy (TEM) images were achieved to determine the characterization of ZnO nanosheets. The diameter of ZnO nanofilm was from 0.5 to 1 μm, and its thickness ranged from 30 to 50 nm.
Key words: hydrothermal method; zinc oxide (ZnO); nanosheets
Xiaoyan LI , Pei LIANG , Le WANG , Feihong YU . Preparation and characterization of high uniformity zinc oxide nanosheets[J]. Frontiers of Optoelectronics, 2014 , 7(4) : 509 -512 . DOI: 10.1007/s12200-014-0400-z
1 |
Chen S Q, Zhang J, Feng X, Wang X H, Luo L Q, Shi Y L, Xue Q S, Wang C, Zhu J Z, Zhu Z Q. Nanocrystalline ZnO thin films on porous silicon/silicon substrates obtained by sol–gel technique. Applied Surface Science, 2005, 241(3–4): 384–391
|
2 |
Makino T, Chia C, Tuan N, Segawa Y, Kawasaki M, Ohtomo A, Tamura K, Koinuma H. Exciton spectra of ZnO epitaxial layers on lattice-matched substrates grown with laser-molecular-beam epitaxy. Applied Physics Letters, 2000, 76(24): 3549–3551
|
3 |
Ramanathan K, Contreras M A, Perkins C L, Asher S, Hasoon F S, Keane J, Young D, Romero M, Metzger W, Noufi R, Ward J, Duda A. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Progress in Photovoltaics: Research and Applications, 2003, 11(4): 225–230
|
4 |
Yang J L, An S J, Park W I, Yi G C, Choi W. Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition. Advanced Materials, 2004, 16(18): 1661–1664
|
5 |
Wang Z. Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing. Applied Physics A, Materials Science & Processing, 2007, 88(1): 7–15
|
6 |
Lee C, Lee T, Lyu S, Zhang Y, Ruh H, Lee H. Field emission from well-aligned zinc oxide nanowires grown at low temperature. Applied Physics Letters, 2002, 81(19): 3648–3650
|
7 |
Chen X, Nazzal A, Goorskey D, Xiao M, Peng Z A, Peng X. Polarization spectroscopy of single CdSe quantum rods. Physical Review B: Condensed Matter and Materials Physics, 2001, 64(24): 245304-1–245304-4
|
8 |
Zou J, Zhang J X, Zhang B H, Zhao P T, Xu X F, Chen J, Huang K X. Synthesis and characterization of copper sulfide nanocrystal with three-dimensional flower-shape. Journal of Materials Science, 2007, 42(22): 9181–9186
|
9 |
Willander M, Nur O, Zhao Q X, Yang L L, Lorenz M, Cao B Q, Zúñiga Pérez J, Czekalla C, Zimmermann G, Grundmann M, Bakin A, Behrends A, Al-Suleiman M, El-Shaer A, Che Mofor A, Postels B, Waag A, Boukos N, Travlos A, Kwack H S, Guinard J, Le Si Dang D. Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers. Nanotechnology, 2009, 20(33): 332001-1–332001-40
|
10 |
Li Y, Meng G W, Zhang L D, Phillipp F. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Applied Physics Letters, 2000, 76(15): 2011–2013
|
11 |
Lao C S, Liu J, Gao P, Zhang L, Davidovic D, Tummala R, Wang Z L. ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignment across au electrodes. Nano Letters, 2006, 6(2): 263–266
|
12 |
Chen S J, Liu Y C, Shao C L, Mu R, Lu Y M, Zhang J Y, Shen D Z, Fan X W. Structural and optical properties of uniform ZnO nanosheets. Advanced Materials, 2005, 17(5): 586–590
|
13 |
Hu J Q, Bando Y, Zhan J H, Li Y B, Sekiguchi T. Two-dimensional micrometer-sized single-crystalline ZnO thin nanosheets. Applied Physics Letters, 2003, 83(21): 4414–4416
|
14 |
Tan S T, Chen B J, Sun X W, Fan W J, Kwok H S, Zhang X H, Chua S J. Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition. Journal of Applied Physics, 2005, 98(1): 013505-1–013505-5
|
15 |
Carcia P, McLean R, Reilly M, Nunes G. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Applied Physics Letters, 2003, 82(7): 1117–1119
|
16 |
Jin B, Im S, Lee S. Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin Solid Films, 2000, 366(1–2): 107–110
|
17 |
Baruah S, Dutta J. Hydrothermal growth of ZnO nanostructures. Science and Technology of Advanced Materials, 2009, 10(1): 013001-1–013001-18
|
18 |
Wang Y X, Fan X Y, Sun J. Hydrothermal synthesis of phosphate-mediated ZnO nanosheets. Materials Letters, 2009, 63(3–4): 350–352
|
19 |
Chin K C, Poh C K, Chong G L, Lin J, Sow C H, Wee A T S. Large area, rapid growth of two-dimensional ZnO nanosheets and their field emission performances. Applied Physics A, Materials Science & Processing, 2008, 90(4): 623–627
|
20 |
Yang J H, Zheng J H, Zhai H J, Yang L L, Lang J H, Gao M. Growth mechanism and optical properties of ZnO nanosheets by the hydrothermal method on Si substrates. Journal of Alloys and Compounds, 2009, 481(1–2): 628–631
|
21 |
Umar A, Hahn Y. ZnO nanosheet networks and hexagonal nanodiscs grown on silicon substrate: growth mechanism and structural and optical properties. Nanotechnology, 2006, 17(9): 2174–2180
|
/
〈 | 〉 |