Preparation and characterization of high uniformity zinc oxide nanosheets
Xiaoyan LI, Pei LIANG, Le WANG, Feihong YU
Preparation and characterization of high uniformity zinc oxide nanosheets
This paper reports a synthesis of zinc oxide (ZnO) nanosheets by hydrothermal method. ZnO nanosheets on Al substrate were generated by hydrothermal synthesis with zinc nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetramine (HMT) as a research system, which were controlled conditions of the reaction. The energy dispersive spectroscopy (EDS), scanning electron microscope (SEM) and transmission electron microscopy (TEM) images were achieved to determine the characterization of ZnO nanosheets. The diameter of ZnO nanofilm was from 0.5 to 1 μm, and its thickness ranged from 30 to 50 nm.
hydrothermal method / zinc oxide (ZnO) / nanosheets
[1] |
Chen S Q, Zhang J, Feng X, Wang X H, Luo L Q, Shi Y L, Xue Q S, Wang C, Zhu J Z, Zhu Z Q. Nanocrystalline ZnO thin films on porous silicon/silicon substrates obtained by sol–gel technique. Applied Surface Science, 2005, 241(3–4): 384–391
CrossRef
Google scholar
|
[2] |
Makino T, Chia C, Tuan N, Segawa Y, Kawasaki M, Ohtomo A, Tamura K, Koinuma H. Exciton spectra of ZnO epitaxial layers on lattice-matched substrates grown with laser-molecular-beam epitaxy. Applied Physics Letters, 2000, 76(24): 3549–3551
CrossRef
Google scholar
|
[3] |
Ramanathan K, Contreras M A, Perkins C L, Asher S, Hasoon F S, Keane J, Young D, Romero M, Metzger W, Noufi R, Ward J, Duda A. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Progress in Photovoltaics: Research and Applications, 2003, 11(4): 225–230
CrossRef
Google scholar
|
[4] |
Yang J L, An S J, Park W I, Yi G C, Choi W. Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition. Advanced Materials, 2004, 16(18): 1661–1664
CrossRef
Google scholar
|
[5] |
Wang Z. Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing. Applied Physics A, Materials Science & Processing, 2007, 88(1): 7–15
CrossRef
Google scholar
|
[6] |
Lee C, Lee T, Lyu S, Zhang Y, Ruh H, Lee H. Field emission from well-aligned zinc oxide nanowires grown at low temperature. Applied Physics Letters, 2002, 81(19): 3648–3650
CrossRef
Google scholar
|
[7] |
Chen X, Nazzal A, Goorskey D, Xiao M, Peng Z A, Peng X. Polarization spectroscopy of single CdSe quantum rods. Physical Review B: Condensed Matter and Materials Physics, 2001, 64(24): 245304-1–245304-4
|
[8] |
Zou J, Zhang J X, Zhang B H, Zhao P T, Xu X F, Chen J, Huang K X. Synthesis and characterization of copper sulfide nanocrystal with three-dimensional flower-shape. Journal of Materials Science, 2007, 42(22): 9181–9186
CrossRef
Google scholar
|
[9] |
Willander M, Nur O, Zhao Q X, Yang L L, Lorenz M, Cao B Q, Zúñiga Pérez J, Czekalla C, Zimmermann G, Grundmann M, Bakin A, Behrends A, Al-Suleiman M, El-Shaer A, Che Mofor A, Postels B, Waag A, Boukos N, Travlos A, Kwack H S, Guinard J, Le Si Dang D. Zinc oxide nanorod based photonic devices: recent progress in growth, light emitting diodes and lasers. Nanotechnology, 2009, 20(33): 332001-1–332001-40
CrossRef
Google scholar
|
[10] |
Li Y, Meng G W, Zhang L D, Phillipp F. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Applied Physics Letters, 2000, 76(15): 2011–2013
CrossRef
Google scholar
|
[11] |
Lao C S, Liu J, Gao P, Zhang L, Davidovic D, Tummala R, Wang Z L. ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignment across au electrodes. Nano Letters, 2006, 6(2): 263–266
CrossRef
Pubmed
Google scholar
|
[12] |
Chen S J, Liu Y C, Shao C L, Mu R, Lu Y M, Zhang J Y, Shen D Z, Fan X W. Structural and optical properties of uniform ZnO nanosheets. Advanced Materials, 2005, 17(5): 586–590
CrossRef
Google scholar
|
[13] |
Hu J Q, Bando Y, Zhan J H, Li Y B, Sekiguchi T. Two-dimensional micrometer-sized single-crystalline ZnO thin nanosheets. Applied Physics Letters, 2003, 83(21): 4414–4416
CrossRef
Google scholar
|
[14] |
Tan S T, Chen B J, Sun X W, Fan W J, Kwok H S, Zhang X H, Chua S J. Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition. Journal of Applied Physics, 2005, 98(1): 013505-1–013505-5
|
[15] |
Carcia P, McLean R, Reilly M, Nunes G. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Applied Physics Letters, 2003, 82(7): 1117–1119
CrossRef
Google scholar
|
[16] |
Jin B, Im S, Lee S. Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin Solid Films, 2000, 366(1–2): 107–110
CrossRef
Google scholar
|
[17] |
Baruah S, Dutta J. Hydrothermal growth of ZnO nanostructures. Science and Technology of Advanced Materials, 2009, 10(1): 013001-1–013001-18
CrossRef
Google scholar
|
[18] |
Wang Y X, Fan X Y, Sun J. Hydrothermal synthesis of phosphate-mediated ZnO nanosheets. Materials Letters, 2009, 63(3–4): 350–352
CrossRef
Google scholar
|
[19] |
Chin K C, Poh C K, Chong G L, Lin J, Sow C H, Wee A T S. Large area, rapid growth of two-dimensional ZnO nanosheets and their field emission performances. Applied Physics A, Materials Science & Processing, 2008, 90(4): 623–627
CrossRef
Google scholar
|
[20] |
Yang J H, Zheng J H, Zhai H J, Yang L L, Lang J H, Gao M. Growth mechanism and optical properties of ZnO nanosheets by the hydrothermal method on Si substrates. Journal of Alloys and Compounds, 2009, 481(1–2): 628–631
CrossRef
Google scholar
|
[21] |
Umar A, Hahn Y. ZnO nanosheet networks and hexagonal nanodiscs grown on silicon substrate: growth mechanism and structural and optical properties. Nanotechnology, 2006, 17(9): 2174–2180
CrossRef
Google scholar
|
/
〈 | 〉 |