Introduction
Silicon hybrid nanoplasmonic waveguidest
Principle of silicon hybrid nanoplasmonic waveguides
Structures of silicon hybrid nanoplasmonic waveguides
Fig.2 (a) Cross section of a hybrid plasmonic waveguide with a metal cap; (b) calculated field distribution for the major component Ey(x,y) of the quasi-TM fundamental mode of the hybrid plasmonic waveguide with wco = 200 nm and hslot = 50 nm. In this figure, the field distributions Ey(0, y) and Ey(x, 0) are also shown [21] |
Tab.1 Reported silicon hybrid nanoplasmonic waveguides with rectangular structures |
Ref. | year | configuration | theory/ experiment | features |
---|---|---|---|---|
[18] | 2007 | theory | structure: Si/SiO2/Ag λ: 500~1200 nm FWHM: 400 nm Lprop: 13.5 µm | |
[21] | 2009 | theory | structure: Ag/SiO2/ Si λ: 1550 nm WWG: 50 nm Lprop: ~90 µm | |
[45] | 2010 | experimen | structure: Au-SiO2-Si λ: 1550 nm WWG: 250 nm Lprop: 40 µm | |
[49] | 2010 | theory | structure: Ag-SiO2-Si-SiO2-Ag λ: 1550 nm Si-core width: 50 nm Aeff: 0.007 µm2 Lprop: ~20 µm | |
[47] | 2011 | theory | structure: Ag-SiO2-Si λ: 1550 nm WWG: 70 nm loss: ~0.1 dB/µm Aeff: 0.066 µm2 | |
[51] | 2011 | theory | structure: Al-SiO2-Si-SiO2-Al λ: 1550 nm Si-core width: 300 nm Lprop: ~31 µm | |
[53] | 2011 | experimen | structure: Al-SiO2-Si-SiO2-Al λ: 1550 nm Si-core width: 43-136 nm loss: 1.07-1.63 dB/µm | |
[54] | 2011 | experiment | structure: Cu-SiO2-Si-SiO2-Cu λ: 1550 nm Si-core width: 21-134 nm loss: 0.37-0.63 dB/µm | |
[55] | 2011 | experiment | structure: Ag-SiO2-Si-SiO2- Ag λ: 1550 nm Si-core width: 300 nm; propagation loss: 1.6 dB/mm | |
[65] | 2012 | experiment | structure: Cu-SiO2-Si λ: 1550 nm waveguide width: 160 nm loss: 0.122 dB/µm | |
[52] | 2012 | experiment | structure: Cu-SiOx-Si-SiOx-Cu λ: 1554 nm/1318 nm Si-core width: 160-220 nm loss: 0.2-0.3 dB/µm | |
[57] | 2013 | experiment | structure: Ag-air-Si λ: 1550 nm Si width: 400 nm loss: 0.14 dB/µm | |
[56] | 2013 | theory | structure: Si-Si:nc-Ag-Si-nc-Si λ: 1550 nm slot size: 150 nm × 200 nm loss: 3 × 10-4 dB/µm | |
[38] | 2013 | theory | Structure: Ag-Air-Si λ: 1550 nm Aeff: 2.8 × 10-6 λ2 Lprop: 2.6 µm |
Fig.19 (a) Cross section of a hybrid plasmonic waveguide with an inverted metal rib; (b) field distribution in a hybrid plasmonic waveguide with the following parameters: nH = 3.455, nL = 1.445, nmetal = 0.1453+ 11.3587i, H = 300 nm, hrib = 250 nm, hslot = 10 nm, hm = 100 nm, and wco = 200 nm [47] |
Silicon hybrid nanoplasmonic waveguides for TE polarization
Fig.20 (a) Cross section of a hybrid plasmonic waveguide with double low-index slots; (b) field distribution for the major component Ex(x, y) of the quasi-TE fundamental mode when wco = 50 nm and wSiO2 = 10 nm. Here the field distributions Ex(x0, y) and Ex(x, y0) are also shown. Here x0 = wSi/2+ wSiO2/2 and y0 = hSi/2 [49] |
Silicon hybrid nanoplasmonic devices
Ultra-sharp bending of silicon hybrid nanoplasmonic waveguides
Optical couplers/splitters
Ultrasmall resonators
Polarization handling devices
Discussion on the issue and applications of silicon hybrid nanoplasmonic waveguides
Loss issue
Tab.3 Gain reported in literatures [47] |
Ref. | gain medium | gain | wavelength |
---|---|---|---|
[122] | IR140 dye molecules (Sigma Aldrich) | 360 cm-1 | 882 nm |
[123] | PMMA with Rhodamine 6G dye (R6G) | 420 cm-1 | 594 nm |
[124] | Er-doped phosphate glass | 1 cm-1 | 1532 nm |
[125] | Er-doped Al2O3 | 0.3 cm-1 | 1530 nm |
[126] | sulfide (PbS) QDs | 150 cm-1 | 1525 nm |
[127] | GaInAsP | 1200 cm-1 | 1500 nm |
[128] | PbS semiconductor quantum dots | 1700 cm-1 | 1250 nm |
[129] | PMMA with PbS QDs | 17 cm-1 | 1160 nm |
[130] | dye solution | - | 633 nm |
[131] | PbS QDs | 200 cm-1 | 860 nm |
[132] | silicon nanocrystals | 100 cm-1 | 800 nm |
[133] | MDMO-PPV:PSF | 90 cm-1 | 600 nm |