Silicon hybrid nanoplasmonics for ultra-dense photonic integration
Xiaowei GUAN, Hao WU, Daoxin DAI
Silicon hybrid nanoplasmonics for ultra-dense photonic integration
Recently hybrid plasmonic waveguides have been becoming very attractive as a promising candidate to realize next-generation ultra-dense photonic integrated circuits because of the ability to achieve nano-scale confinement of light and relatively long propagation distance. Furthermore, hybrid plasmonic waveguides also offer a platform to merge photonics and electronics so that one can realize ultra-small optoelectronic integrated circuits (OEICs) for high-speed signal generation, processing as well as detection. In this paper, we gave a review for the progresses on various hybrid plasmonic waveguides as well as ultrasmall functionality devices developed recently.
plasmonics / hybrid / silicon / nanowire / integration
[1] |
Tsuchizawa T, Yamada K, Fukuda H, Watanabe T, Takahashi J, Takahashi M, Shoji T, Tamechika E, Itabashi S, Morita H. Microphotonics devices based on silicon microfabrication technology. IEEE Journal on Selected Topics in Quantum Electronics, 2005, 11(1): 232–240
CrossRef
Google scholar
|
[2] |
Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211
CrossRef
Pubmed
Google scholar
|
[3] |
Thylén L, Qiu M, Anand S. Photonic crystals—a step towards integrated circuits for photonics. ChemPhysChem, 2004, 5(9): 1268–1283
CrossRef
Pubmed
Google scholar
|
[4] |
Goto T, Katagiri Y, Fukuda H, Shinojima H, Nakano Y, Kobayashi I, Mitsuoka Y. Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates. Applied Physics Letters, 2004, 84(6): 852–854
CrossRef
Google scholar
|
[5] |
Charbonneau R, Lahoud N, Mattiussi G, Berini P. Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons. Optics Express, 2005, 13(3): 977–984
CrossRef
Pubmed
Google scholar
|
[6] |
Zia R, Selker M D, Catrysse P B, Brongersma M L. Geometries and materials for subwavelength surface plasmon modes. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2004, 21(12): 2442–2446
CrossRef
Pubmed
Google scholar
|
[7] |
Wang B, Wang G P. Surface plasmon polariton propagation in nanoscale metal gap waveguides. Optics Letters, 2004, 29(17): 1992–1994
CrossRef
Pubmed
Google scholar
|
[8] |
Tanaka K, Tanaka M. Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Applied Physics Letters, 2003, 82(8): 1158–1160
CrossRef
Google scholar
|
[9] |
Tanaka K, Tanaka M, Sugiyama T. Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides. Optics Express, 2005, 13(1): 256–266
CrossRef
Pubmed
Google scholar
|
[10] |
Kusunoki F, Yotsuya T, Takahara J, Kobayashi T. Propagation properties of guided waves in index-guided two-dimensional optical waveguides. Applied Physics Letters, 2005, 86(21): 211101-1–211101-3
CrossRef
Google scholar
|
[11] |
Pile D F P, Gramotnev D K. Channel plasmon-polariton in a triangular groove on a metal surface. Optics Letters, 2004, 29(10): 1069–1071
CrossRef
Pubmed
Google scholar
|
[12] |
Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 2006, 440(7083): 508–511
CrossRef
Pubmed
Google scholar
|
[13] |
Pile D F P, Gramotnev D K. Plasmonic subwavelength waveguides: next to zero losses at sharp bends. Optics Letters, 2005, 30(10): 1186–1188
CrossRef
Pubmed
Google scholar
|
[14] |
Xiao S S, Liu L, Qiu M. Resonator channel drop filters in a plasmon-polaritons metal. Optics Express, 2006, 14(7): 2932–2937
CrossRef
Pubmed
Google scholar
|
[15] |
Liu L, Han Z H, He S L. Novel surface plasmon waveguide for high integration. Optics Express, 2005, 13(17): 6645–6650
CrossRef
Pubmed
Google scholar
|
[16] |
Veronis G, Fan S H. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Applied Physics Letters, 2005, 87(13): 131102-1–131102-3
CrossRef
Google scholar
|
[17] |
Zia R, Schuller A J, Chandran A, Brongersma L M. Plasmonics: the next chip-scale technology. Materials Today, 2006, 9(7–8): 21–27
|
[18] |
Alam M Z, Meier J, Aitchison J S, Mojahedi M. Super mode propagation in low index medium. In: Proceedings of Quantum Electronics and Laser Science Conference. Baltimore, 2007,JThD112
|
[19] |
Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photonics, 2008, 2(8): 496–500
CrossRef
Google scholar
|
[20] |
Fujii M, Leuthold J, Freude W. Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides. IEEE Photonics Technology Letters, 2009, 21(6): 362–364
CrossRef
Google scholar
|
[21] |
Dai D X, He S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646–16653
CrossRef
Pubmed
Google scholar
|
[22] |
Dai D X, Yang L. Proposal of a thermally-tunable silicon-on-insulator microring resonator filter. In: Proceedings of Asia Optical Fiber Communication & Optoelectrnic Exposition & Conference. Shanghai, 2007, 582–583
|
[23] |
Feng N N, Brongersma M L, Negro L D. Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 µm. IEEE Journal of Quantum Electronics, 2007, 43(6): 479–485
CrossRef
Google scholar
|
[24] |
Wang Z, Dai D X, Shi Y, Somesfalean G, Holmstrom P, Thylen L, He S, Wosinski L. Experimental realization of a low-loss nano-scale Si hybrid plasmonic waveguide. In: Proceedings of Optical Fiber Communication Conference. Los Angeles, 2011
|
[25] |
Zhou G, Wang T, Pan C, Hui X, Liu F F, Su Y K. Design of plasmon waveguide with strong field confinement and low loss for nonlinearity enhancement. In: Group Four Photonics. Beijing, 2010
|
[26] |
Chen L, Zhang T, Li X, Huang W. Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film. Optics Express, 2012, 20(18): 20535–20544
CrossRef
Pubmed
Google scholar
|
[27] |
Tian J, Ma Z, Li Q, Song Y, Liu Z, Yang Q, Zha C L, Akerman J, Tong L M, Qiu M. Nanowaveguides and couplers based on hybrid plasmonic modes. Applied Physics Letters, 2010, 97(23): 231121-1–231121-3
CrossRef
Google scholar
|
[28] |
Bian Y S, Zheng Z, Zhao X, Liu L, Su Y L, Liu J S, Zhu J S, Zhou T. Hybrid plasmonic waveguide incorporating an additional semiconductor stripe for enhanced optical confinement in the gap region. Journal of Optics, 2013, 15(3): 035503-1–035503-9
CrossRef
Google scholar
|
[29] |
Bian Y S, Gong Q H. Multilayer metal-dielectric planar waveguides for subwavelength guiding of long-range hybrid plasmon polaritons at 1550 nm. Journal of Optics, 2014, 16(1): 015001-1–015001-12
CrossRef
Google scholar
|
[30] |
Chen L, Li X, Wang G P, Li W, Chen S H, Xiao L, Gao D S. A silicon-based 3-D hybrid long-rang plasmonic waveguide for nanophotonic integrating. Journal of Lightwave Technology, 2012, 30(1): 163–168
CrossRef
Google scholar
|
[31] |
Noghani M T, Samiei M H V. Analysis and optimum design of hybrid plasmonic slab waveguides. Plasmonics, 2013, 8(2): 1155–1168
CrossRef
Google scholar
|
[32] |
Bian Y S, Zheng Z, Zhao X, Liu L, Su Y L, Liu J S, Zhu J S, Zhou T. Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove. Journal of Optics, 2013, 15(5): 055011-1–055011-6
CrossRef
Google scholar
|
[33] |
Bian Y S, Gong Q. Low-loss hybrid plasmonic modes guided by metal-coated dielectric wedges for subwavelength light confinement. Applied Optics, 2013, 52(23): 5733–5741
CrossRef
Pubmed
Google scholar
|
[34] |
Bian Y S, Gong Q. Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes. Optics Express, 2013, 21(20): 23907–23920
CrossRef
Pubmed
Google scholar
|
[35] |
Amirhosseini A, Safian R. A hybrid plasmonic waveguide for the propagation of surface plasmon polariton at 1.55 µm on SOI substrate. IEEE Transactions on Nanotechnology, 2013, 12(6): 1031–1036
CrossRef
Google scholar
|
[36] |
Kou Y, Ye F W, Chen X F. Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration. Optics Express, 2011, 19(12): 11746–11752
CrossRef
Pubmed
Google scholar
|
[37] |
Hao R, Li E P, Wei X C. Two-dimensional light confinement in cross-index-modulation plasmonic waveguides. Optics Letters, 2012, 37(14): 2934–2936
CrossRef
Pubmed
Google scholar
|
[38] |
Huang Q, Bao F, He S. Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement. Optics Express, 2013, 21(2): 1430–1439
CrossRef
Pubmed
Google scholar
|
[39] |
Lu Q, Chen D, Wu G. Low-loss hybrid plasmonic waveguide based on metal ridge and semiconductor nanowire. Optics Communications, 2013, 289: 64–68
CrossRef
Google scholar
|
[40] |
Lou F, Wang Z, Dai D, Thylen L, Wosinski L. Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides. Applied Physics Letters, 2012, 100(24): 241105-1–241105-4
CrossRef
Google scholar
|
[41] |
Alam M Z, Meier J, Aitchison J S, Mojahedi M. Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Optics Express, 2010, 18(12): 12971–12979
CrossRef
Pubmed
Google scholar
|
[42] |
Horvath C, Bachman D, Wu M, Perron D, Van V. Polymer hybrid plasmonic waveguides and microring resonators. IEEE Photonics Technology Letters, 2011, 23(17): 1267–1269
CrossRef
Google scholar
|
[43] |
Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X. Plasmon lasers at deep subwavelength scale. Nature, 2009, 461(7264): 629–632
CrossRef
Pubmed
Google scholar
|
[44] |
Su Y, Zheng Z, Bian Y S, Liu Y, Liu J S, Zhu J S, Zhou T. Low-loss silicon-based hybrid plasmonic waveguide with an air nanotrench for sub-wavelength mode confinement. Micro & Nano Letters, 2011, 6(8): 643–645
CrossRef
Google scholar
|
[45] |
Wu M, Han Z, Van V. Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale. Optics Express, 2010, 18(11): 11728–11736
CrossRef
Pubmed
Google scholar
|
[46] |
Bian Y S, Zheng Z, Zhao X, Liu L, Su Y L, Liu J S, Zhu J S, Zhou T. Nanoscale light guiding in a silicon-based hybrid plasmonic waveguide that incorporates an inverse metal ridge. Physica Status Solidi A, 2013, 210(7): 1424–1428
CrossRef
Google scholar
|
[47] |
Dai D X, Shi Y C, He S L, Wosinski L, Thylen L. Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Optics Express, 2011, 19(14): 12925–12936
CrossRef
Pubmed
Google scholar
|
[48] |
Goykhman I, Desiatov B, Levy U. Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide. Applied Physics Letters, 2010, 97(14): 141106-1–141106-3
CrossRef
Google scholar
|
[49] |
Dai D X, He S L. Low-loss hybrid plasmonic waveguide with double low-index nano-slots. Optics Express, 2010, 18(17): 17958–17966
CrossRef
Pubmed
Google scholar
|
[50] |
Kwon M S. Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology. Optics Express, 2011, 19(9): 8379–8393
CrossRef
Pubmed
Google scholar
|
[51] |
Kim J T. CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits. IEEE Photonics Technology Letters, 2011, 23(20): 1481–1483
CrossRef
Google scholar
|
[52] |
Kwon M S, Shin J S, Shin S Y, Lee W G. Characterizations of realized metal-insulator-silicon-insulator-metal waveguides and nanochannel fabrication via insulator removal. Optics Express, 2012, 20(20): 21875–21887
CrossRef
Pubmed
Google scholar
|
[53] |
Zhu S, Liow T Y, Lo G Q, Kwong D L. Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits. Applied Physics Letters, 2011, 98(2): 021107-1–021107-3
CrossRef
Google scholar
|
[54] |
Zhu S, Liow T Y, Lo G Q, Kwong D L. Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration. Optics Express, 2011, 19(9): 8888–8902
CrossRef
Pubmed
Google scholar
|
[55] |
Zuo X, Sun Z. Low-loss plasmonic hybrid optical ridge waveguide on silicon-on-insulator substrate. Optics Letters, 2011, 36(15): 2946–2948
CrossRef
Pubmed
Google scholar
|
[56] |
Xiang C, Wang J. Long-range hybrid plasmonic slot waveguide. IEEE Photonics Journal, 2013, 5(2): 4800311-1–4800311-11
CrossRef
Google scholar
|
[57] |
Li H, Noh J W, Chen Y, Li M. Enhanced optical forces in integrated hybrid plasmonic waveguides. Optics Express, 2013, 21(10): 11839–11851
CrossRef
Pubmed
Google scholar
|
[58] |
Xiao J, Liu J, Zheng Z, Bian Y, Wang G, Li S. Low-loss metal-insulator-semiconductor waveguide with an air core for on-chip integration. Optics Communications, 2012, 285(17): 3604–3607
CrossRef
Google scholar
|
[59] |
Guan X, Chen P, Wang X, Wosinski L, Shi Y, Dai D. Ultrasmall directional coupler and disk-resonantor based on nano-scale silicon hybrid plasmonic waveguides. In: Proceedings of Asia Communications and Photonics Conference. Guangzhou, 2012
|
[60] |
Song Y, Yan M, Yang Q, Tong L M, Qiu M. Reducing crosstalk between nanowire-based hybrid plasmonic waveguides. Optics Communications, 2011, 284(1): 480–484
CrossRef
Google scholar
|
[61] |
Alam M Z, Caspers J N, Aitchison J S, Mojahedi M. Compact low loss and broadband hybrid plasmonic directional coupler. Optics Express, 2013, 21(13): 16029–16034
CrossRef
Pubmed
Google scholar
|
[62] |
Noghani M T, Samiei M H V. Ultrashort hybrid metal-insulator plasmonic directional coupler. Applied Optics, 2013, 52(31): 7498–7503
CrossRef
Pubmed
Google scholar
|
[63] |
Li Q, Song Y, Zhou G, Su Y K, Qiu M. Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss. Optics Letters, 2010, 35(19): 3153–3155
CrossRef
Pubmed
Google scholar
|
[64] |
Zhu S, Lo G Q, Kwong D L. Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides. Optics Express, 2012, 20(6): 5867–5881
CrossRef
Pubmed
Google scholar
|
[65] |
Zhu S, Lo G Q, Kwong D L. Experiment demonstration of vertical Cu-SiO2-Si hybrid plasmonic waveguide components on an SOI platform. IEEE Photonics Technology Letters, 2012, 24(14): 1224–1226
CrossRef
Google scholar
|
[66] |
Chu H S, Bai P, Li E P, Hoefer W R J. Hybrid dielectric-loaded plasmonic waveguide-based power splitter and ring resonator: compact size and high optical performance for nanophotonic circuits. Plasmonics, 2011, 6(3): 591–597
CrossRef
Google scholar
|
[67] |
Song Y, Wang J, Yan M, Qiu M. Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter. Journal of Optics, 2011, 13(7): 075002-1–075002-8
CrossRef
Google scholar
|
[68] |
Wang J, Guan X, He Y, Shi Y, Wang Z, He S, Holmström P, Wosinski L, Thylen L, Dai D. Sub-µm2 power splitters by using silicon hybrid plasmonic waveguides. Optics Express, 2011, 19(2): 838–847
CrossRef
Pubmed
Google scholar
|
[69] |
Xiao J, Liu J, Zheng Z, Bian Y, Wang G. Design and analysis of a nanostructure grating based on a hybrid plasmonic slot waveguide. Journal of Optics, 2011, 13(10): 105001
CrossRef
Google scholar
|
[70] |
Shin J S, Kwon M S, Lee C H, Shin S Y. Investigation and improvement of 90° direct bends of metal-insulator-silicon-insulator-metal waveguides. IEEE Photonics Journal, 2013, 5(5): 6601909-1–6601909-5
CrossRef
Google scholar
|
[71] |
Dai D, Shi Y, He S, Wosinski L, Thylen L. Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides. Optics Express, 2011, 19(24): 23671–23682
CrossRef
Pubmed
Google scholar
|
[72] |
Chu H S, Akimov Y, Bai P, Li E P. Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide. Optics Letters, 2012, 37(21): 4564–4566
CrossRef
Pubmed
Google scholar
|
[73] |
Zhu S, Lo G Q, Kwong D L. Performance of ultracompact copper-capped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths. Optics Express, 2012, 20(14): 15232–15246
CrossRef
Pubmed
Google scholar
|
[74] |
Zhu S, Lo G, Kwong D L. Towards athermal nanoplasmonic resonators based on Cu-TiO2-Si hybrid plasmonic waveguide. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Anaheim, 2013
|
[75] |
Zhu S, Lo G Q, Kwong D L. Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius. IEEE Photonics Technology Letters, 2011, 23(24): 1896–1898
CrossRef
Google scholar
|
[76] |
Lou F, Thylen L, Wosinski L. Hybrid plasmonic microdisk resonators for optical interconnect applications. In: Integrated Optics: Physics and Simulations. Prague: Society of Photo-Optical Instrumentation Engineers, 2013
|
[77] |
Song Y, Wang J, Yan M, Qiu M. Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor. Journal of Optics, 2011, 13(7): 075001-1–075001-5
CrossRef
Google scholar
|
[78] |
Xu P, Huang Q, Shi Y. Silicon hybrid plasmonic Bragg grating reflectors and high Q-factor micro-cavities. Optics Communications, 2013, 289: 81–84
CrossRef
Google scholar
|
[79] |
Yang X, Ishikawa A, Yin X, Zhang X. Hybrid photonic-plasmonic crystal nanocavities. ACS Nano, 2011, 5(4): 2831–2838
CrossRef
Pubmed
Google scholar
|
[80] |
Yu P, Qi B, Xu C, Hu T, Jiang X Q, Wang M H, Yang J Y. An improved surface-plasmonic nanobeam cavity for higher Q and smaller V. Chinese Science Bulletin, 2012, 57(25): 3371–3374
CrossRef
Google scholar
|
[81] |
Alam M, Aitchsion J S, Mojahedi M. Compact hybrid TM-pass polarizer for silicon-on-insulator platform. Applied Optics, 2011, 50(15): 2294–2298
CrossRef
Pubmed
Google scholar
|
[82] |
Guan X W, Xu P P, Shi Y C, Dai D X. Ultra-compact broadband TM-pass polarizer using a silicon hybrid plasmonic waveguide grating. In: Proceedings of Asia Communications and Photonics Conference. Beijing, 2013, ATh4A
|
[83] |
Guan X W, Xu P P, Shi Y C, Dai D X. Ultra-compact and ultra-broadband TE-pass polarizer with a silicon hybrid plasmonic waveguide. In: Proceedings of SPIE Photonics West. San Francisco, 2014, 8988
|
[84] |
Alam M Z, Aitchison J S, Mojahedi M. Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer. Optics Letters, 2012, 37(1): 55–57
CrossRef
Pubmed
Google scholar
|
[85] |
Huang Y, Zhu S, Zhang H, Liow T Y, Lo G Q. CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform. Optics Express, 2013, 21(10): 12790–12796
CrossRef
Pubmed
Google scholar
|
[86] |
Sun X, Alam M Z, Wagner S J, Aitchison J S, Mojahedi M. Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform. Optics Letters, 2012, 37(23): 4814–4816
CrossRef
Pubmed
Google scholar
|
[87] |
Chee J, Zhu S, Lo G Q. CMOS compatible polarization splitter using hybrid plasmonic waveguide. Optics Express, 2012, 20(23): 25345–25355
CrossRef
Pubmed
Google scholar
|
[88] |
Gao L F, Hu F F, Wang X J, Tang L X, Zhou Z P. Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic-dielectric coupling. Applied Physics. B, Lasers and Optics, 2013, 113(2): 199–203
CrossRef
Google scholar
|
[89] |
Guan X W, Wu H, Shi Y C, Wosinski L, Dai D X. Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire. Optics Letters, 2013, 38(16): 3005–3008
CrossRef
Pubmed
Google scholar
|
[90] |
Lou F, Dai D X, Wosinski L. Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler. Optics Letters, 2012, 37(16): 3372–3374
CrossRef
Pubmed
Google scholar
|
[91] |
Sun B, Chen M Y, Zhang Y K, Zhou J. An ultracompact hybrid plasmonic waveguide polarization beam splitter. Applied Physics B, Lasers and Optics, 2013, 113(2): 179–183
CrossRef
Google scholar
|
[92] |
Guan X W, Wu H, Shi Y C, Dai D X. Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide. Optics Letters, 2014, 39(2): 259–262
CrossRef
Pubmed
Google scholar
|
[93] |
Caspers J N, Alam M Z, Mojahedi M. Compact hybrid plasmonic polarization rotator. Optics Letters, 2012, 37(22): 4615–4617
CrossRef
Pubmed
Google scholar
|
[94] |
Caspers J N, Aitchison J S, Mojahedi M. Experimental demonstration of an integrated hybrid plasmonic polarization rotator. Optics Letters, 2013, 38(20): 4054–4057
CrossRef
Pubmed
Google scholar
|
[95] |
Gao L, Huo Y, Harris J S, Zhou Z. Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide. IEEE Photonics Technology Letters, 2013, 25(21): 2081–2084
CrossRef
Google scholar
|
[96] |
Song Y, Wang J, Li Q, Yan M, Qiu M. Broadband coupler between silicon waveguide and hybrid plasmonic waveguide. Optics Express, 2010, 18(12): 13173–13179
CrossRef
Pubmed
Google scholar
|
[97] |
Zhu S, Lo G, Kwong D. Analysis of ultracompact silicon electro-optic modulator based on Cu-insulator-Si hybrid plasmonic donut resonator. In: Proceedings of Photonics Global Conference. Singapore, 2012
CrossRef
Google scholar
|
[98] |
Ooi K J A, Bai P, Chu H, Ang L K. Vandium dioxide active plasmonics. In: Proceedings of Photonics Global Conference. Singapore, 2012
CrossRef
Google scholar
|
[99] |
Sun X M, Zhou L J, Li X W, Hong Z H, Liu S, Chen J P. Miniature intensity modulator based on a silicon-polymer hybrid plasmonic waveguide. In: Proceedings of SPIE Photonics and Optoelectronics Meetings. Shanghai, 2011, 8333
|
[100] |
Lou F, Dai D X, Thylen L, Wosinski L. Design and analysis of ultra-compact EO polymer modulators based on hybrid plasmonic microring resonators. Optics Express, 2013, 21(17): 20041–20051
CrossRef
Pubmed
Google scholar
|
[101] |
Dalton L R, Robinson B, Jen A, Ried P, Eichinger B, Sullivan P, Akelaitis A, Bale D, Haller M, Luo J, Liu S, Liao Y, Firestone K, Bhatambrekar N, Bhattacharjee S, Sinness J, Hammond S, Buker N, Snoeberger R, Lingwood M, Rommel H, Amend J, Jang S H, Chen A, Steier W. Electro-optic coefficients of 500 pm/V and beyond for organic materials. In: Proceeding of SPIE 5935, Linear and Nonlinear Optics of Organic Materials V. 2005
CrossRef
Google scholar
|
[102] |
Sun X M, Zhou L J, Li X W, Hong Z H, Chen J P. Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide. Applied Optics, 2011, 50(20): 3428–3434
CrossRef
Pubmed
Google scholar
|
[103] |
Zhou G, Wang T, Su Y. Broadband optical parametric amplifier in ultra-compact plasmonic waveguide. In: Proceedings of Asia Communications and Photonics Conference. Shanghai, 2010, 79870A
|
[104] |
Bahrami F, Alam M Z, Aitchison J S, Mojahedi M. Dual polarization measurements in the hybrid plasmonic biosensors. Plasmonics, 2013, 8(2): 465–473
CrossRef
Google scholar
|
[105] |
Kwon M S. Theoretical investigation of an interferometer-type plasmonic biosensor using a metal-insulator-silicon waveguide. Plasmonics, 2010, 5(4): 347–354
CrossRef
Google scholar
|
[106] |
Zhou L J, Sun X M, Li X W, Chen J P. Miniature microring resonator sensor based on a hybrid plasmonic waveguide. Sensors (Basel, Switzerland), 2011, 11(7): 6856–6867
CrossRef
Pubmed
Google scholar
|
[107] |
Zhang L, Shu Y. Modified hybrid plasmonic waveguides as tunable optical tweezers. Chinese Physics Letters, 2013, 30(3): 034208-1–034208-4
CrossRef
Google scholar
|
[108] |
Yang X, Liu Y, Oulton R F, Yin X, Zhang X. Optical forces in hybrid plasmonic waveguides. Nano Letters, 2011, 11(2): 321–328
CrossRef
Pubmed
Google scholar
|
[109] |
Guan X, Wu H, Dai D. Silicon hybrid surface plasmonic nano-optics-waveguide and integrated devices. Chinese Journal of Optics and Applied Optics, 2014, 7(2): 181–196
CrossRef
Google scholar
|
[110] |
Liang D, Fiorentino M, Okumura T, Chang H H, Spencer D T, Kuo Y H, Fang A W, Dai D, Beausoleil R G, Bowers J E. Electrically-pumped compact hybrid silicon microring lasers for optical interconnects. Optics Express, 2009, 17(22): 20355–20364
CrossRef
Pubmed
Google scholar
|
[111] |
Dong P, Feng N N, Feng D, Qian W, Liang H, Lee D C, Luff B J, Banwell T, Agarwal A, Toliver P, Menendez R, Woodward T K, Asghari M. GHz-bandwidth optical filters based on high-order silicon ring resonators. Optics Express, 2010, 18(23): 23784–23789
CrossRef
Pubmed
Google scholar
|
[112] |
Xu Q, Schmidt B, Pradhan S, Lipson M. Micrometre-scale silicon electro-optic modulator. Nature, 2005, 435(7040): 325–327
CrossRef
Pubmed
Google scholar
|
[113] |
Wang J W, Dai D X. Highly sensitive Si nanowire-based optical sensor using a Mach-Zehnder interferometer coupled microring. Optics Letters, 2010, 35(24): 4229–4231
Pubmed
|
[114] |
Dekker R, Usechak N, Forst M, Driessen A. Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides. Journal of Physics D, 2007, 40(14): R249–R271
CrossRef
Google scholar
|
[115] |
Dai D X, Liu L, Gao S M, Xu D X, He S L. Polarization management for silicon photonic integrated circuits. Laser Photonics Review, 2013, 7(3): 303–328
CrossRef
Google scholar
|
[116] |
Dai D, Tang Y, Bowers J E. Mode conversion in tapered submicron silicon ridge optical waveguides. Optics Express, 2012, 20(12): 13425–13439
CrossRef
Pubmed
Google scholar
|
[117] |
Wang Z W, Dai D X. Ultrasmall Si-nanowire based polarization rotator. Journal of the Optical Society of America. B, Optical Physics, 2008, 25(5): 747–753
CrossRef
Google scholar
|
[118] |
Cardenas J, Poitras C B, Robinson J T, Preston K, Chen L, Lipson M. Low loss etchless silicon photonic waveguides. Optics Express, 2009, 17(6): 4752–4757
CrossRef
Pubmed
Google scholar
|
[119] |
Mote R G, Chu H S, Bai P, Li E P. Compact and efficient coupler to interface hybrid dielectric-loaded plasmonic waveguide with silicon photonic slab waveguide. Optics Communications, 2012, 285(18): 3709–3713
CrossRef
Google scholar
|
[120] |
Choi S E, Kim J T. Vertical coupling characteristics between hybrid plasmonic slot waveguide and Si waveguide. Optics Communications, 2012, 285(18): 3735–3739
CrossRef
Google scholar
|
[121] |
Shi P, Zhou G, Chau F S. Enhanced coupling efficiency between dielectric and hybrid plasmonic waveguides. Journal of the Optical Society of America. B, Optical Physics, 2013, 30(6): 1426–1431
CrossRef
Google scholar
|
[122] |
De Leon I, Berini P. Amplification of long-range surface plasmons by a dipolar gain medium. Nature Photonics, 2010, 4(6): 382–387
CrossRef
Google scholar
|
[123] |
Noginov M A, Zhu G, Mayy M, Ritzo B A, Noginova N, Podolskiy V A. Stimulated emission of surface plasmon polaritons. Physical Review Letters, 2008, 101(22): 226806
CrossRef
Pubmed
Google scholar
|
[124] |
Ambati M, Nam S H, Ulin-Avila E, Genov D A, Bartal G, Zhang X. Observation of stimulated emission of surface plasmon polaritons. Nano Letters, 2008, 8(11): 3998–4001
CrossRef
Pubmed
Google scholar
|
[125] |
van den Hoven G N, Koper R J I M, Polman A, van Dam C, van Uffelen J W M, Smit M K. Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon. Applied Physics Letters, 1996, 68(14): 1886–1888
CrossRef
Google scholar
|
[126] |
Grandidier J, des Francs G C, Massenot S, Bouhelier A, Markey L, Weeber J C, Finot C, Dereux A. Gain-assisted propagation in a plasmonic waveguide at telecom wavelength. Nano Letters, 2009, 9(8): 2935–2939
CrossRef
Pubmed
Google scholar
|
[127] |
Nezhad M, Tetz K, Fainman Y. Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. Optics Express, 2004, 12(17): 4072–4079
CrossRef
Pubmed
Google scholar
|
[128] |
Plum E, Fedotov V A, Kuo P, Tsai D P, Zheludev N I. Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. Optics Express, 2009, 17(10): 8548–8551
CrossRef
Pubmed
Google scholar
|
[129] |
Bolger P M, Dickson W, Krasavin A V, Liebscher L, Hickey S G, Skryabin D V, Zayats A V. Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length. Optics Letters, 2010, 35(8): 1197–1199
CrossRef
Pubmed
Google scholar
|
[130] |
Seidel J, Grafström S, Eng L. Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. Physical Review Letters, 2005, 94(17): 177401
CrossRef
Pubmed
Google scholar
|
[131] |
Radko I, Nielsen M G, Albrektsen O, Bozhevolnyi S I. Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths. Optics Express, 2010, 18(18): 18633–18641
CrossRef
Pubmed
Google scholar
|
[132] |
Pavesi L, Dal Negro L, Mazzoleni C, Franzò G, Priolo F. Optical gain in silicon nanocrystals. Nature, 2000, 408(6811): 440–444
CrossRef
Pubmed
Google scholar
|
[133] |
Gather M C, Meerholz K, Danz N, Leosson K. Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nature Photonics, 2010, 4(7): 457–461
CrossRef
Google scholar
|
[134] |
Rao R J, Tang T T. Study of an active hybrid gap surface plasmon polariton waveguide with nanoscale confinement size and low compensation gain. Journal of Physics. D, Applied Physics, 2012, 45(24): 245101
CrossRef
Google scholar
|
[135] |
Zhang J, Cai L, Bai W L, Xu Y, Song G F. Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement. Optics Letters, 2011, 36(12): 2312–2314
CrossRef
Pubmed
Google scholar
|
[136] |
Zhu N, Mei T. Study of an SPP mode with gain medium based on a hybrid plasmonic structure. In: Proceedings of Asia Communications and Photonics Conference (ACP). Guangzhou, 2012, AF4A.17
|
[137] |
Gao L F, Tang L X, Hu F F, Guo R M, Wang X J, Zhou Z P. Active metal strip hybrid plasmonic waveguide with low critical material gain. Optics Express, 2012, 20(10): 11487–11495
CrossRef
Pubmed
Google scholar
|
[138] |
Ma R M, Oulton R F, Sorger V J, Bartal G, Zhang X. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nature Materials, 2011, 10(2): 110–113
CrossRef
Pubmed
Google scholar
|
[139] |
Zhu S, Lo G Q, Kwong D L. Theoretical investigation of ultracompact and athermal Si electro-optic modulator based on Cu-TiO2-Si hybrid plasmonic donut resonator. Optics Express, 2013, 21(10): 12699–12712
CrossRef
Pubmed
Google scholar
|
[140] |
Zhou G, Wang T, Su Y. Broadband optical parametric amplifier in ultra-compact plasmonic waveguide. In: Proceedings of Asia Communications and Photonics Conference. Shanghai, 2010, 79870A
|
[141] |
Zhang J, Cassan E, Zhang X. Efficient second harmonic generation from mid-infrared to near-infrared regions in silicon-organic hybrid plasmonic waveguides with small fabrication-error sensitivity and a large bandwidth. Optics Letters, 2013, 38(12): 2089–2091
CrossRef
Pubmed
Google scholar
|
[142] |
Aldawsari S, West B R. Hybrid plasmonic waveguides for nonlinear applications. In: Proceedings of Photonics Global Conference. Singapore, 2012
CrossRef
Google scholar
|
[143] |
Pitilakis A, Kriezis E E. Highly nonlinear hybrid silicon-plasmonic waveguides: analysis and optimization. Journal of the Optical Society of America. B, Optical Physics, 2013, 30(7): 1954–1965
CrossRef
Google scholar
|
[144] |
Perron D, Wu M, Horvath C, Bachman D, Van V. All-plasmonic switching based on thermal nonlinearity in a polymer plasmonic microring resonator. Optics Letters, 2011, 36(14): 2731–2733
CrossRef
Pubmed
Google scholar
|
[145] |
Lu C C, Hu X Y, Yue S, Fu Y L, Yang H, Gong Q H. Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications. Plasmonics, 2013, 8(2): 749–754
CrossRef
Google scholar
|
[146] |
Li F, Xu M, Hu X F, Wu J Y, Wang T, Su Y K. Monolithic silicon-based 16-QAM modulator using two plasmonic phase shifters. Optics Communications, 2013, 286: 166–170
CrossRef
Google scholar
|
[147] |
Luo Y, Chamanzar M, Eftekhar A A, Adibi A. Dual structures for ultra-compact on-chip plasmonic light concentration on silicon platforms. In: Proceedings of IEEE Photonics Conference, Burlingame, 2012, 682–683
|
[148] |
Zhu N, Mei T. Focusing and demultiplexing of an in-plane hybrid plasmonic mode based on the planar concave grating. Optics Communications, 2013, 298-299: 120–124
|
[149] |
Ketzaki D A, Tsilipakos O, Yioultsis T V, Kriezis E E. Electromagnetically induced transparency with hybrid silicon-plasmonic traveling-wave resonators. Journal of Applied Physics, 2013, 114(11): 11317-1–11317-8
CrossRef
Google scholar
|
[150] |
Zhu N, Mei T. Analysis of an ultra-compact wavelength filter based on hybrid plasmonic waveguide structure. Optics Letters, 2012, 37(10): 1751–1753
CrossRef
Pubmed
Google scholar
|
[151] |
Akimov Y A, Chu H S. Plasmon-plasmon interaction: controlling light at nanoscale. Nanotechnology, 2012, 23(44): 444004
CrossRef
Pubmed
Google scholar
|
[152] |
Hu Y W, Li B B, Liu Y X, Xiao Y F, Gong Q. Hybrid photonic-plasmonic mode for refractometer and nanoparticle trapping. Optics Communications, 2013, 291: 380–385
|
[153] |
Lanzillotti-Kimura N D, Zentgraf T, Zhang X. Control of plasmon dynamics in coupled plasmonic hybrid mode microcavities. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(4): 045309-1–045309-6
CrossRef
Google scholar
|
[154] |
Zhang T, Chen L, Li X. Reduction of propagation loss by introducing hybrid plasmonic model in graded-grating based “trapped rainbow” system. Optics Communications, 2013, 301-302: 116–120
CrossRef
Google scholar
|
[155] |
Zhu S, Lo G Q, Kwong D L. Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide. Optics Express, 2011, 19(17): 15843–15854
CrossRef
Pubmed
Google scholar
|
[156] |
He X Y, Wang Q J, Yu S F. Numerical study of gain-assisted terahertz hybrid plasmonic waveguide. Plasmonics, 2012, 7(3): 571–577
CrossRef
Google scholar
|
/
〈 | 〉 |