Multi-octave two-color soliton frequency comb in integrated chalcogenide microresonators
Huanjie Cheng, Guosheng Lin, Di Xia, Liyang Luo, Siqi Lu, Changyuan Yu, Bin Zhang
Multi-octave two-color soliton frequency comb in integrated chalcogenide microresonators
Mid-infrared (MIR) Kerr microcombs are of significant interest for portable dual-comb spectroscopy and precision molecular sensing due to strong molecular vibrational absorption in the MIR band. However, achieving a compact, octave-spanning MIR Kerr microcomb remains a challenge due to the lack of suitable MIR photonic materials for the core and cladding of integrated devices and appropriate MIR continuous-wave (CW) pump lasers. Here, we propose a novel slot concentric dual-ring (SCDR) microresonator based on an integrated chalcogenide glass chip, which offers excellent transmission performance and flexible dispersion engineering in the MIR band. This device achieves both phase-matching and group velocity matching in two separated anomalous dispersion regions, enabling phase-locked, two-color solitons in the MIR region with a commercial 2-μm CW laser as the pump source. Moreover, the spectral locking of the two-color soliton enhances pump wavelength selectivity, providing precise control over soliton dynamics. By leveraging the dispersion characteristics of the SCDR microresonator, we have demonstrated a multi-octave-spanning, two-color soliton microcomb, covering a spectral range from 1156.07 to 5054.95 nm (200 THz) at a -40 dB level, highlighting the versatility and broad applicability of our approach. And the proposed multi-octave MIR frequency comb is relevant for applications such as dual-comb spectroscopy and trace-gas sensing.
Mid-infrared / Kerr microcombs / Two-color soliton / Multi-octave / Chalcogenide glasses
[1] |
Picqué, N., Hänsch, T.W.: Frequency comb spectroscopy. Nat. Photonics 13(3), 146–157 (2019)
CrossRef
Google scholar
|
[2] |
Schliesser, A., Picqué, N., Hänsch, T.W.: Mid-infrared frequency combs. Nat. Photonics 6(7), 440–449 (2012)
CrossRef
Google scholar
|
[3] |
Kippenberg, T.J., Holzwarth, R., Diddams, S.A.: Microresonator-based optical frequency combs. Science 332(6029), 555–559 (2011)
CrossRef
Google scholar
|
[4] |
Gaeta, A.L., Lipson, M., Kippenberg, T.J.: Photonic-chip-based frequency combs. Nat. Photonics 13(3), 158–169 (2019)
CrossRef
Google scholar
|
[5] |
Guo, Y., Wang, J., Han, Z., Wada, K., Kimerling, L.C., Agarwal, A.M., Michel, J., Zheng, Z., Li, G., Zhang, L.: Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator. Nanophotonics 7(8), 1461–1467 (2018)
CrossRef
Google scholar
|
[6] |
Anashkina, E.A., Marisova, M.P., Sorokin, A.A., Andrianov, A.V.: Numerical simulation of mid-infrared optical frequency comb generation in chalcogenide As2S3 microbubble resonators. Photonics 6(2), 55 (2019)
CrossRef
Google scholar
|
[7] |
Lu, S., Lin, G., Xia, D., Wang, Z., Luo, L., Li, Z., Zhang, B.: Broadband mid-infrared frequency comb in integrated chalcogenide microresonator. Photonics 10(6), 628 (2023)
CrossRef
Google scholar
|
[8] |
Lin, H., Luo, Z., Gu, T., Kimerling, L.C., Wada, K., Agarwal, A., Hu, J.: Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics 7(2), 393–420 (2017)
CrossRef
Google scholar
|
[9] |
Moille, G., Li, Q., Kim, S., Westly, D., Srinivasan, K.: Phasedlocked two-color single soliton microcombs in dispersion-engineered Si3N4 resonators. Opt. Lett. 43(12), 2772–2775 (2018)
CrossRef
Google scholar
|
[10] |
Melchert, O., Willms, S., Morgner, U., Babushkin, I., Demircan, A.: Crossover from two-frequency pulse compounds to escaping solitons. Sci. Rep. 11(1), 11190 (2021)
CrossRef
Google scholar
|
[11] |
Melchert, O., Willms, S., Bose, S., Yulin, A., Roth, B., Mitschke, F., Morgner, U., Babushkin, I., Demircan, A.: Soliton molecules with two frequencies. Phys. Rev. Lett. 123(24), 243905 (2019)
CrossRef
Google scholar
|
[12] |
Lourdesamy, J.P., Runge, A.F.J., Alexander, T.J., Hudson, D.D., Blanco-Redondo, A., de Sterke, C.M.: Spectrally periodic pulses for enhancement of optical nonlinear effects. Nat. Phys. 18(1), 59–66 (2022)
CrossRef
Google scholar
|
[13] |
Luo, R., Liang, H., Lin, Q.: Multicolor cavity soliton. Opt. Express 24(15), 16777–16787 (2016)
CrossRef
Google scholar
|
[14] |
Eggleton, B.J., Luther-Davies, B., Richardson, K.: Chalcogenide photonics. Nat. Photonics 5(3), 141–148 (2011)
CrossRef
Google scholar
|
[15] |
Petersen, C.R., Møller, U., Kubat, I., Zhou, B., Dupont, S., Ramsay, J., Benson, T., Sujecki, S., Abdel-Moneim, N., Tang, Z., Furniss, D., Seddon, A., Bang, O.: Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultrahigh NA chalcogenide step-index fibre. Nat. Photonics 8(11), 830–834 (2014)
CrossRef
Google scholar
|
[16] |
Kim, D.G., Han, S., Hwang, J., Do, I.H., Jeong, D., Lim, J.H., Lee, Y.H., Choi, M., Lee, Y.H., Choi, D.Y., Lee, H.: Universal light-guiding geometry for on-chip resonators having extremely high Q-factor. Nat. Commun.Commun. 11(1), 5933 (2020)
CrossRef
Google scholar
|
[17] |
Xia, D., Huang, Y., Zhang, B., Zeng, P., Zhao, J., Yang, Z., Sun, S., Luo, L., Hu, G., Liu, D., Wang, Z., Li, Y., Guo, H., Li, Z.: Engineered Raman lasing in photonic integrated chalcogenide microresonators. Laser Photonics Rev. 16(4), 2100443 (2022)
CrossRef
Google scholar
|
[18] |
Xia, D., Yang, Z., Zeng, P., Zhang, B., Wu, J., Wang, Z., Zhao, J., Huang, J., Luo, L., Liu, D., Yang, S., Guo, H., Li, Z.: Integrated chalcogenide photonics for microresonator soliton combs. Laser Photonics Rev. 17(3), 2200219 (2023)
CrossRef
Google scholar
|
[19] |
Xia, D., Zhao, J., Cheng, H., Wang, Z., Huang, J., Luo, L., Liu, D., Yang, S., Zhang, B., Li, Z.: Energy dissipation engineering for widely tunable (1.2–2.1 μm) optical parametric oscillation in integrated chalcogenide microresonators. Laser Photonics Rev. (2024)
CrossRef
Google scholar
|
[20] |
Shen, W., Zeng, P., Yang, Z., Xia, D., Du, J., Zhang, B., Xu, K., He, Z., Li, Z.: Chalcogenide glass photonic integration for improved 2 μm optical interconnection. Photon. Res. 8(9), 1484–1490 (2020)
CrossRef
Google scholar
|
[21] |
Li, J., Liu, Y., Meng, Y., Xu, K., Du, J., Wang, F., He, Z., Song, Q.: 2 μm wavelength grating coupler, bent waveguide, and tunable microring on silicon photonic MPW. IEEE Photonics Technol. Lett. 30(5), 471–474 (2018)
CrossRef
Google scholar
|
[22] |
Yu, Y., Gai, X., Ma, P., Vu, K., Yang, Z., Wang, R., Choi, D.Y., Madden, S., Luther-Davies, B.: Experimental demonstration of linearly polarized 2–10 μm supercontinuum generation in a chalcogenide rib waveguide. Opt. Lett. 41(5), 958–961 (2016)
CrossRef
Google scholar
|
[23] |
Kong, D., Liu, Y., Ren, Z., Jung, Y., Kim, C., Chen, Y., Wheeler, N.V., Petrovich, M.N., Pu, M., Yvind, K., Galili, M., Oxenløwe, L.K., Richardson, D.J., Hu, H.: Super-broadband on-chip continuous spectral translation unlocking coherent optical communications beyond conventional telecom bands. Nat. Commun. Commun. 13(1), 4139 (2022)
CrossRef
Google scholar
|
[24] |
Xia, D., Huang, Y., Zhang, B., Yang, Z., Zeng, P., Shang, H., Cheng, H., Liu, L., Zhang, M., Zhu, Y., Li, Z.: On-chip broadband mid-infrared supercontinuum generation based on highly nonlinear chalcogenide glass waveguides. Front. Phys. 9, 598091 (2021)
CrossRef
Google scholar
|
[25] |
Oreshnikov, I., Melchert, O., Willms, S., Bose, S., Babushkin, I., Demircan, A., Morgner, U., Yulin, A.: Cherenkov radiation and scattering of external dispersive waves by two-color solitons. Phys. Rev. A 106(5), 053514 (2022)
CrossRef
Google scholar
|
[26] |
Kim, S., Han, K., Wang, C., Jaramillo-Villegas, J.A., Xue, X., Bao, C., Xuan, Y., Leaird, D.E., Weiner, A.M., Qi, M.: Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators. Nat. Commun.Commun. 8(1), 372 (2017)
CrossRef
Google scholar
|
[27] |
Pan, J., Xia, D., Wang, Z., Zhang, B., Li, Z.: Chalcogenide chip-based frequency combs for advanced laser spectroscopy. J. Lightwave Technol. 41(13), 4065–4078 (2023)
CrossRef
Google scholar
|
[28] |
Wang, Z., Luo, L., Xia, D., Lu, S., Lin, G., Gao, S., Li, Z., Zhang, B.: Engineered octave frequency comb in integrated chalcogenide dual-ring microresonators. Front. Photon. 4, 1066993 (2023)
CrossRef
Google scholar
|
[29] |
Moille, G., Westly, D., Orji, N.G., Srinivasan, K.: Tailoring broadband Kerr soliton microcombs via post-fabrication tuning of the geometric dispersion. Appl. Phys. Lett. 119(12), 121103 (2021)
CrossRef
Google scholar
|
[30] |
Moille, G., Lu, X., Stone, J., Westly, D., Srinivasan, K.: Fourier synthesis dispersion engineering of photonic crystal microrings for broadband frequency combs. Commun. Phys.. Phys. 6(1), 144 (2023)
CrossRef
Google scholar
|
[31] |
Pfeiffer, M.H.P., Herkommer, C., Liu, J., Guo, H., Karpov, M., Lucas, E., Zervas, M., Kippenberg, T.J.: Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica 4(7), 684–691 (2017)
CrossRef
Google scholar
|
[32] |
Guo, Y., Jafari, Z., Xu, L., Bao, C., Liao, P., Li, G., Agarwal, A.M., Kimerling, L.C., Michel, J., Willner, A.E., Zhang, L.: Ultra-flat dispersion in an integrated waveguide with five and six zero-dispersion wavelengths for mid-infrared photonics. Photon. Res. 7(11), 1279–1286 (2019)
CrossRef
Google scholar
|
[33] |
Weng, H., Liu, J., Afridi, A.A., Li, J., Dai, J., Ma, X., Zhang, Y., Lu, Q., Donegan, J.F., Guo, W.: Directly accessing octavespanning dissipative Kerr soliton frequency combs in an AlN microresonator. Photon. Res. 9(7), 1351–1357 (2021)
CrossRef
Google scholar
|
[34] |
Gu, J., Li, X., Qi, K., Pu, K., Li, Z., Zhang, F., Li, T., Xie, Z., Xiao, M., Jiang, X.: Octave-spanning soliton microcomb in silica microdisk resonators. Opt. Lett. 48(5), 1100–1103 (2023)
CrossRef
Google scholar
|
[35] |
Song, Y., Hu, Y., Zhu, X., Yang, K., Loncar, M.: Octave-spanning Kerr soliton microcombs on thin-film lithium niobate. arXiv preprint arXiv: 2403.01107.(2024)
CrossRef
Google scholar
|
[36] |
Luke, K., Okawachi, Y., Lamont, M.R., Gaeta, A.L., Lipson, M.: Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett. 40(21), 4823–4826 (2015)
CrossRef
Google scholar
|
[37] |
Moille, G., Westly, D., Srinivasan, K.: Broadband visible wavelength microcomb generation in silicon nitride microrings through air-clad dispersion engineering. arXiv preprint arXiv: 2404.01577 (2024)
|
[38] |
Coen, S., Randle, H.G., Sylvestre, T., Erkintalo, M.: Modeling of octave-spanning Kerr frequency combs using a generalized meanfield Lugiato-Lefever model. Opt. Lett. 38(1), 37–39 (2013)
CrossRef
Google scholar
|
[39] |
Anderson, M.H., Weng, W., Lihachev, G., Tikan, A., Liu, J., Kippenberg, T.J.: Zero dispersion Kerr solitons in optical microresonators. Nat. Commun. Commun. 13(1), 4764 (2022)
CrossRef
Google scholar
|
[40] |
Yu, M., Okawachi, Y., Griffith, A.G., Lipson, M., Gaeta, A.L.: Modelocked mid-infrared frequency combs in a silicon microresonator. Optica 3(8), 854–860 (2016)
CrossRef
Google scholar
|
[41] |
Wang, W., Ming, X., Shi, L., Ma, K., Ren, D., Sun, Q., Wang, L., Zhang, W.: Broadband mid-infrared frequency comb generation in a large-cross-section silicon microresonator. IEEE Photonics J. 15(3), 1–6 (2023)
CrossRef
Google scholar
|
[42] |
Zhang, L., Bao, C., Singh, V., Mu, J., Yang, C., Agarwal, A.M., Kimerling, L.C., Michel, J.: Generation of two-cycle pulses and octave-spanning frequency combs in a dispersion-flattened micro-resonator. Opt. Lett. 38(23), 5122–5125 (2013)
CrossRef
Google scholar
|
[43] |
Coddington, I., Swann, W.C., Newbury, N.R.: Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100(1), 013902 (2008)
CrossRef
Google scholar
|
[44] |
Bernhardt, B., Ozawa, A., Jacquet, P., Jacquey, M., Kobayashi, Y., Udem, T., Holzwarth, R., Guelachvili, G., Hänsch, T.W., Picqué, N.: Cavity-enhanced dual-comb spectroscopy. Nat. Photonics 4(1), 55–57 (2010)
CrossRef
Google scholar
|
[45] |
Ycas, G., Giorgetta, F.R., Baumann, E., Coddington, I., Herman, D., Diddams, S.A., Newbury, N.R.: High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm. Nat. Photonics 12(4), 202–208 (2018)
CrossRef
Google scholar
|
/
〈 | 〉 |