Multi-octave two-color soliton frequency comb in integrated chalcogenide microresonators

Huanjie Cheng, Guosheng Lin, Di Xia, Liyang Luo, Siqi Lu, Changyuan Yu, Bin Zhang

PDF(4469 KB)
PDF(4469 KB)
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (4) : 36. DOI: 10.1007/s12200-024-00139-x
RESEARCH ARTICLE

Multi-octave two-color soliton frequency comb in integrated chalcogenide microresonators

Author information +
History +

Abstract

Mid-infrared (MIR) Kerr microcombs are of significant interest for portable dual-comb spectroscopy and precision molecular sensing due to strong molecular vibrational absorption in the MIR band. However, achieving a compact, octave-spanning MIR Kerr microcomb remains a challenge due to the lack of suitable MIR photonic materials for the core and cladding of integrated devices and appropriate MIR continuous-wave (CW) pump lasers. Here, we propose a novel slot concentric dual-ring (SCDR) microresonator based on an integrated chalcogenide glass chip, which offers excellent transmission performance and flexible dispersion engineering in the MIR band. This device achieves both phase-matching and group velocity matching in two separated anomalous dispersion regions, enabling phase-locked, two-color solitons in the MIR region with a commercial 2-μm CW laser as the pump source. Moreover, the spectral locking of the two-color soliton enhances pump wavelength selectivity, providing precise control over soliton dynamics. By leveraging the dispersion characteristics of the SCDR microresonator, we have demonstrated a multi-octave-spanning, two-color soliton microcomb, covering a spectral range from 1156.07 to 5054.95 nm (200 THz) at a -40 dB level, highlighting the versatility and broad applicability of our approach. And the proposed multi-octave MIR frequency comb is relevant for applications such as dual-comb spectroscopy and trace-gas sensing.

Graphical abstract

Keywords

Mid-infrared / Kerr microcombs / Two-color soliton / Multi-octave / Chalcogenide glasses

Cite this article

Download citation ▾
Huanjie Cheng, Guosheng Lin, Di Xia, Liyang Luo, Siqi Lu, Changyuan Yu, Bin Zhang. Multi-octave two-color soliton frequency comb in integrated chalcogenide microresonators. Front. Optoelectron., 2024, 17(4): 36 https://doi.org/10.1007/s12200-024-00139-x

References

[1]
Picqué, N., Hänsch, T.W.: Frequency comb spectroscopy. Nat. Photonics 13(3), 146–157 (2019)
CrossRef Google scholar
[2]
Schliesser, A., Picqué, N., Hänsch, T.W.: Mid-infrared frequency combs. Nat. Photonics 6(7), 440–449 (2012)
CrossRef Google scholar
[3]
Kippenberg, T.J., Holzwarth, R., Diddams, S.A.: Microresonator-based optical frequency combs. Science 332(6029), 555–559 (2011)
CrossRef Google scholar
[4]
Gaeta, A.L., Lipson, M., Kippenberg, T.J.: Photonic-chip-based frequency combs. Nat. Photonics 13(3), 158–169 (2019)
CrossRef Google scholar
[5]
Guo, Y., Wang, J., Han, Z., Wada, K., Kimerling, L.C., Agarwal, A.M., Michel, J., Zheng, Z., Li, G., Zhang, L.: Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator. Nanophotonics 7(8), 1461–1467 (2018)
CrossRef Google scholar
[6]
Anashkina, E.A., Marisova, M.P., Sorokin, A.A., Andrianov, A.V.: Numerical simulation of mid-infrared optical frequency comb generation in chalcogenide As2S3 microbubble resonators. Photonics 6(2), 55 (2019)
CrossRef Google scholar
[7]
Lu, S., Lin, G., Xia, D., Wang, Z., Luo, L., Li, Z., Zhang, B.: Broadband mid-infrared frequency comb in integrated chalcogenide microresonator. Photonics 10(6), 628 (2023)
CrossRef Google scholar
[8]
Lin, H., Luo, Z., Gu, T., Kimerling, L.C., Wada, K., Agarwal, A., Hu, J.: Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics 7(2), 393–420 (2017)
CrossRef Google scholar
[9]
Moille, G., Li, Q., Kim, S., Westly, D., Srinivasan, K.: Phasedlocked two-color single soliton microcombs in dispersion-engineered Si3N4 resonators. Opt. Lett. 43(12), 2772–2775 (2018)
CrossRef Google scholar
[10]
Melchert, O., Willms, S., Morgner, U., Babushkin, I., Demircan, A.: Crossover from two-frequency pulse compounds to escaping solitons. Sci. Rep. 11(1), 11190 (2021)
CrossRef Google scholar
[11]
Melchert, O., Willms, S., Bose, S., Yulin, A., Roth, B., Mitschke, F., Morgner, U., Babushkin, I., Demircan, A.: Soliton molecules with two frequencies. Phys. Rev. Lett. 123(24), 243905 (2019)
CrossRef Google scholar
[12]
Lourdesamy, J.P., Runge, A.F.J., Alexander, T.J., Hudson, D.D., Blanco-Redondo, A., de Sterke, C.M.: Spectrally periodic pulses for enhancement of optical nonlinear effects. Nat. Phys. 18(1), 59–66 (2022)
CrossRef Google scholar
[13]
Luo, R., Liang, H., Lin, Q.: Multicolor cavity soliton. Opt. Express 24(15), 16777–16787 (2016)
CrossRef Google scholar
[14]
Eggleton, B.J., Luther-Davies, B., Richardson, K.: Chalcogenide photonics. Nat. Photonics 5(3), 141–148 (2011)
CrossRef Google scholar
[15]
Petersen, C.R., Møller, U., Kubat, I., Zhou, B., Dupont, S., Ramsay, J., Benson, T., Sujecki, S., Abdel-Moneim, N., Tang, Z., Furniss, D., Seddon, A., Bang, O.: Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultrahigh NA chalcogenide step-index fibre. Nat. Photonics 8(11), 830–834 (2014)
CrossRef Google scholar
[16]
Kim, D.G., Han, S., Hwang, J., Do, I.H., Jeong, D., Lim, J.H., Lee, Y.H., Choi, M., Lee, Y.H., Choi, D.Y., Lee, H.: Universal light-guiding geometry for on-chip resonators having extremely high Q-factor. Nat. Commun.Commun. 11(1), 5933 (2020)
CrossRef Google scholar
[17]
Xia, D., Huang, Y., Zhang, B., Zeng, P., Zhao, J., Yang, Z., Sun, S., Luo, L., Hu, G., Liu, D., Wang, Z., Li, Y., Guo, H., Li, Z.: Engineered Raman lasing in photonic integrated chalcogenide microresonators. Laser Photonics Rev. 16(4), 2100443 (2022)
CrossRef Google scholar
[18]
Xia, D., Yang, Z., Zeng, P., Zhang, B., Wu, J., Wang, Z., Zhao, J., Huang, J., Luo, L., Liu, D., Yang, S., Guo, H., Li, Z.: Integrated chalcogenide photonics for microresonator soliton combs. Laser Photonics Rev. 17(3), 2200219 (2023)
CrossRef Google scholar
[19]
Xia, D., Zhao, J., Cheng, H., Wang, Z., Huang, J., Luo, L., Liu, D., Yang, S., Zhang, B., Li, Z.: Energy dissipation engineering for widely tunable (1.2–2.1 μm) optical parametric oscillation in integrated chalcogenide microresonators. Laser Photonics Rev. (2024)
CrossRef Google scholar
[20]
Shen, W., Zeng, P., Yang, Z., Xia, D., Du, J., Zhang, B., Xu, K., He, Z., Li, Z.: Chalcogenide glass photonic integration for improved 2 μm optical interconnection. Photon. Res. 8(9), 1484–1490 (2020)
CrossRef Google scholar
[21]
Li, J., Liu, Y., Meng, Y., Xu, K., Du, J., Wang, F., He, Z., Song, Q.: 2 μm wavelength grating coupler, bent waveguide, and tunable microring on silicon photonic MPW. IEEE Photonics Technol. Lett. 30(5), 471–474 (2018)
CrossRef Google scholar
[22]
Yu, Y., Gai, X., Ma, P., Vu, K., Yang, Z., Wang, R., Choi, D.Y., Madden, S., Luther-Davies, B.: Experimental demonstration of linearly polarized 2–10 μm supercontinuum generation in a chalcogenide rib waveguide. Opt. Lett. 41(5), 958–961 (2016)
CrossRef Google scholar
[23]
Kong, D., Liu, Y., Ren, Z., Jung, Y., Kim, C., Chen, Y., Wheeler, N.V., Petrovich, M.N., Pu, M., Yvind, K., Galili, M., Oxenløwe, L.K., Richardson, D.J., Hu, H.: Super-broadband on-chip continuous spectral translation unlocking coherent optical communications beyond conventional telecom bands. Nat. Commun. Commun. 13(1), 4139 (2022)
CrossRef Google scholar
[24]
Xia, D., Huang, Y., Zhang, B., Yang, Z., Zeng, P., Shang, H., Cheng, H., Liu, L., Zhang, M., Zhu, Y., Li, Z.: On-chip broadband mid-infrared supercontinuum generation based on highly nonlinear chalcogenide glass waveguides. Front. Phys. 9, 598091 (2021)
CrossRef Google scholar
[25]
Oreshnikov, I., Melchert, O., Willms, S., Bose, S., Babushkin, I., Demircan, A., Morgner, U., Yulin, A.: Cherenkov radiation and scattering of external dispersive waves by two-color solitons. Phys. Rev. A 106(5), 053514 (2022)
CrossRef Google scholar
[26]
Kim, S., Han, K., Wang, C., Jaramillo-Villegas, J.A., Xue, X., Bao, C., Xuan, Y., Leaird, D.E., Weiner, A.M., Qi, M.: Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators. Nat. Commun.Commun. 8(1), 372 (2017)
CrossRef Google scholar
[27]
Pan, J., Xia, D., Wang, Z., Zhang, B., Li, Z.: Chalcogenide chip-based frequency combs for advanced laser spectroscopy. J. Lightwave Technol. 41(13), 4065–4078 (2023)
CrossRef Google scholar
[28]
Wang, Z., Luo, L., Xia, D., Lu, S., Lin, G., Gao, S., Li, Z., Zhang, B.: Engineered octave frequency comb in integrated chalcogenide dual-ring microresonators. Front. Photon. 4, 1066993 (2023)
CrossRef Google scholar
[29]
Moille, G., Westly, D., Orji, N.G., Srinivasan, K.: Tailoring broadband Kerr soliton microcombs via post-fabrication tuning of the geometric dispersion. Appl. Phys. Lett. 119(12), 121103 (2021)
CrossRef Google scholar
[30]
Moille, G., Lu, X., Stone, J., Westly, D., Srinivasan, K.: Fourier synthesis dispersion engineering of photonic crystal microrings for broadband frequency combs. Commun. Phys.. Phys. 6(1), 144 (2023)
CrossRef Google scholar
[31]
Pfeiffer, M.H.P., Herkommer, C., Liu, J., Guo, H., Karpov, M., Lucas, E., Zervas, M., Kippenberg, T.J.: Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica 4(7), 684–691 (2017)
CrossRef Google scholar
[32]
Guo, Y., Jafari, Z., Xu, L., Bao, C., Liao, P., Li, G., Agarwal, A.M., Kimerling, L.C., Michel, J., Willner, A.E., Zhang, L.: Ultra-flat dispersion in an integrated waveguide with five and six zero-dispersion wavelengths for mid-infrared photonics. Photon. Res. 7(11), 1279–1286 (2019)
CrossRef Google scholar
[33]
Weng, H., Liu, J., Afridi, A.A., Li, J., Dai, J., Ma, X., Zhang, Y., Lu, Q., Donegan, J.F., Guo, W.: Directly accessing octavespanning dissipative Kerr soliton frequency combs in an AlN microresonator. Photon. Res. 9(7), 1351–1357 (2021)
CrossRef Google scholar
[34]
Gu, J., Li, X., Qi, K., Pu, K., Li, Z., Zhang, F., Li, T., Xie, Z., Xiao, M., Jiang, X.: Octave-spanning soliton microcomb in silica microdisk resonators. Opt. Lett. 48(5), 1100–1103 (2023)
CrossRef Google scholar
[35]
Song, Y., Hu, Y., Zhu, X., Yang, K., Loncar, M.: Octave-spanning Kerr soliton microcombs on thin-film lithium niobate. arXiv preprint arXiv: 2403.01107.(2024)
CrossRef Google scholar
[36]
Luke, K., Okawachi, Y., Lamont, M.R., Gaeta, A.L., Lipson, M.: Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett. 40(21), 4823–4826 (2015)
CrossRef Google scholar
[37]
Moille, G., Westly, D., Srinivasan, K.: Broadband visible wavelength microcomb generation in silicon nitride microrings through air-clad dispersion engineering. arXiv preprint arXiv: 2404.01577 (2024)
[38]
Coen, S., Randle, H.G., Sylvestre, T., Erkintalo, M.: Modeling of octave-spanning Kerr frequency combs using a generalized meanfield Lugiato-Lefever model. Opt. Lett. 38(1), 37–39 (2013)
CrossRef Google scholar
[39]
Anderson, M.H., Weng, W., Lihachev, G., Tikan, A., Liu, J., Kippenberg, T.J.: Zero dispersion Kerr solitons in optical microresonators. Nat. Commun. Commun. 13(1), 4764 (2022)
CrossRef Google scholar
[40]
Yu, M., Okawachi, Y., Griffith, A.G., Lipson, M., Gaeta, A.L.: Modelocked mid-infrared frequency combs in a silicon microresonator. Optica 3(8), 854–860 (2016)
CrossRef Google scholar
[41]
Wang, W., Ming, X., Shi, L., Ma, K., Ren, D., Sun, Q., Wang, L., Zhang, W.: Broadband mid-infrared frequency comb generation in a large-cross-section silicon microresonator. IEEE Photonics J. 15(3), 1–6 (2023)
CrossRef Google scholar
[42]
Zhang, L., Bao, C., Singh, V., Mu, J., Yang, C., Agarwal, A.M., Kimerling, L.C., Michel, J.: Generation of two-cycle pulses and octave-spanning frequency combs in a dispersion-flattened micro-resonator. Opt. Lett. 38(23), 5122–5125 (2013)
CrossRef Google scholar
[43]
Coddington, I., Swann, W.C., Newbury, N.R.: Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100(1), 013902 (2008)
CrossRef Google scholar
[44]
Bernhardt, B., Ozawa, A., Jacquet, P., Jacquey, M., Kobayashi, Y., Udem, T., Holzwarth, R., Guelachvili, G., Hänsch, T.W., Picqué, N.: Cavity-enhanced dual-comb spectroscopy. Nat. Photonics 4(1), 55–57 (2010)
CrossRef Google scholar
[45]
Ycas, G., Giorgetta, F.R., Baumann, E., Coddington, I., Herman, D., Diddams, S.A., Newbury, N.R.: High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm. Nat. Photonics 12(4), 202–208 (2018)
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s) 2024
AI Summary AI Mindmap
PDF(4469 KB)

Accesses

Citations

Detail

Sections
Recommended

/