
Multi-octave two-color soliton frequency comb in integrated chalcogenide microresonators
Huanjie Cheng, Guosheng Lin, Di Xia, Liyang Luo, Siqi Lu, Changyuan Yu, Bin Zhang
Front. Optoelectron. ›› 2024, Vol. 17 ›› Issue (4) : 36.
Multi-octave two-color soliton frequency comb in integrated chalcogenide microresonators
Mid-infrared (MIR) Kerr microcombs are of significant interest for portable dual-comb spectroscopy and precision molecular sensing due to strong molecular vibrational absorption in the MIR band. However, achieving a compact, octave-spanning MIR Kerr microcomb remains a challenge due to the lack of suitable MIR photonic materials for the core and cladding of integrated devices and appropriate MIR continuous-wave (CW) pump lasers. Here, we propose a novel slot concentric dual-ring (SCDR) microresonator based on an integrated chalcogenide glass chip, which offers excellent transmission performance and flexible dispersion engineering in the MIR band. This device achieves both phase-matching and group velocity matching in two separated anomalous dispersion regions, enabling phase-locked, two-color solitons in the MIR region with a commercial 2-μm CW laser as the pump source. Moreover, the spectral locking of the two-color soliton enhances pump wavelength selectivity, providing precise control over soliton dynamics. By leveraging the dispersion characteristics of the SCDR microresonator, we have demonstrated a multi-octave-spanning, two-color soliton microcomb, covering a spectral range from 1156.07 to 5054.95 nm (200 THz) at a -40 dB level, highlighting the versatility and broad applicability of our approach. And the proposed multi-octave MIR frequency comb is relevant for applications such as dual-comb spectroscopy and trace-gas sensing.
Mid-infrared / Kerr microcombs / Two-color soliton / Multi-octave / Chalcogenide glasses
[1] |
Picqué, N., Hänsch, T.W.: Frequency comb spectroscopy. Nat. Photonics 13(3), 146–157 (2019)
CrossRef
Google scholar
|
[2] |
Schliesser, A., Picqué, N., Hänsch, T.W.: Mid-infrared frequency combs. Nat. Photonics 6(7), 440–449 (2012)
CrossRef
Google scholar
|
[3] |
Kippenberg, T.J., Holzwarth, R., Diddams, S.A.: Microresonator-based optical frequency combs. Science 332(6029), 555–559 (2011)
CrossRef
Google scholar
|
[4] |
Gaeta, A.L., Lipson, M., Kippenberg, T.J.: Photonic-chip-based frequency combs. Nat. Photonics 13(3), 158–169 (2019)
CrossRef
Google scholar
|
[5] |
Guo, Y., Wang, J., Han, Z., Wada, K., Kimerling, L.C., Agarwal, A.M., Michel, J., Zheng, Z., Li, G., Zhang, L.: Power-efficient generation of two-octave mid-IR frequency combs in a germanium microresonator. Nanophotonics 7(8), 1461–1467 (2018)
CrossRef
Google scholar
|
[6] |
Anashkina, E.A., Marisova, M.P., Sorokin, A.A., Andrianov, A.V.: Numerical simulation of mid-infrared optical frequency comb generation in chalcogenide As2S3 microbubble resonators. Photonics 6(2), 55 (2019)
CrossRef
Google scholar
|
[7] |
Lu, S., Lin, G., Xia, D., Wang, Z., Luo, L., Li, Z., Zhang, B.: Broadband mid-infrared frequency comb in integrated chalcogenide microresonator. Photonics 10(6), 628 (2023)
CrossRef
Google scholar
|
[8] |
Lin, H., Luo, Z., Gu, T., Kimerling, L.C., Wada, K., Agarwal, A., Hu, J.: Mid-infrared integrated photonics on silicon: a perspective. Nanophotonics 7(2), 393–420 (2017)
CrossRef
Google scholar
|
[9] |
Moille, G., Li, Q., Kim, S., Westly, D., Srinivasan, K.: Phasedlocked two-color single soliton microcombs in dispersion-engineered Si3N4 resonators. Opt. Lett. 43(12), 2772–2775 (2018)
CrossRef
Google scholar
|
[10] |
Melchert, O., Willms, S., Morgner, U., Babushkin, I., Demircan, A.: Crossover from two-frequency pulse compounds to escaping solitons. Sci. Rep. 11(1), 11190 (2021)
CrossRef
Google scholar
|
[11] |
Melchert, O., Willms, S., Bose, S., Yulin, A., Roth, B., Mitschke, F., Morgner, U., Babushkin, I., Demircan, A.: Soliton molecules with two frequencies. Phys. Rev. Lett. 123(24), 243905 (2019)
CrossRef
Google scholar
|
[12] |
Lourdesamy, J.P., Runge, A.F.J., Alexander, T.J., Hudson, D.D., Blanco-Redondo, A., de Sterke, C.M.: Spectrally periodic pulses for enhancement of optical nonlinear effects. Nat. Phys. 18(1), 59–66 (2022)
CrossRef
Google scholar
|
[13] |
Luo, R., Liang, H., Lin, Q.: Multicolor cavity soliton. Opt. Express 24(15), 16777–16787 (2016)
CrossRef
Google scholar
|
[14] |
Eggleton, B.J., Luther-Davies, B., Richardson, K.: Chalcogenide photonics. Nat. Photonics 5(3), 141–148 (2011)
CrossRef
Google scholar
|
[15] |
Petersen, C.R., Møller, U., Kubat, I., Zhou, B., Dupont, S., Ramsay, J., Benson, T., Sujecki, S., Abdel-Moneim, N., Tang, Z., Furniss, D., Seddon, A., Bang, O.: Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultrahigh NA chalcogenide step-index fibre. Nat. Photonics 8(11), 830–834 (2014)
CrossRef
Google scholar
|
[16] |
Kim, D.G., Han, S., Hwang, J., Do, I.H., Jeong, D., Lim, J.H., Lee, Y.H., Choi, M., Lee, Y.H., Choi, D.Y., Lee, H.: Universal light-guiding geometry for on-chip resonators having extremely high Q-factor. Nat. Commun.Commun. 11(1), 5933 (2020)
CrossRef
Google scholar
|
[17] |
Xia, D., Huang, Y., Zhang, B., Zeng, P., Zhao, J., Yang, Z., Sun, S., Luo, L., Hu, G., Liu, D., Wang, Z., Li, Y., Guo, H., Li, Z.: Engineered Raman lasing in photonic integrated chalcogenide microresonators. Laser Photonics Rev. 16(4), 2100443 (2022)
CrossRef
Google scholar
|
[18] |
Xia, D., Yang, Z., Zeng, P., Zhang, B., Wu, J., Wang, Z., Zhao, J., Huang, J., Luo, L., Liu, D., Yang, S., Guo, H., Li, Z.: Integrated chalcogenide photonics for microresonator soliton combs. Laser Photonics Rev. 17(3), 2200219 (2023)
CrossRef
Google scholar
|
[19] |
Xia, D., Zhao, J., Cheng, H., Wang, Z., Huang, J., Luo, L., Liu, D., Yang, S., Zhang, B., Li, Z.: Energy dissipation engineering for widely tunable (1.2–2.1 μm) optical parametric oscillation in integrated chalcogenide microresonators. Laser Photonics Rev. (2024)
CrossRef
Google scholar
|
[20] |
Shen, W., Zeng, P., Yang, Z., Xia, D., Du, J., Zhang, B., Xu, K., He, Z., Li, Z.: Chalcogenide glass photonic integration for improved 2 μm optical interconnection. Photon. Res. 8(9), 1484–1490 (2020)
CrossRef
Google scholar
|
[21] |
Li, J., Liu, Y., Meng, Y., Xu, K., Du, J., Wang, F., He, Z., Song, Q.: 2 μm wavelength grating coupler, bent waveguide, and tunable microring on silicon photonic MPW. IEEE Photonics Technol. Lett. 30(5), 471–474 (2018)
CrossRef
Google scholar
|
[22] |
Yu, Y., Gai, X., Ma, P., Vu, K., Yang, Z., Wang, R., Choi, D.Y., Madden, S., Luther-Davies, B.: Experimental demonstration of linearly polarized 2–10 μm supercontinuum generation in a chalcogenide rib waveguide. Opt. Lett. 41(5), 958–961 (2016)
CrossRef
Google scholar
|
[23] |
Kong, D., Liu, Y., Ren, Z., Jung, Y., Kim, C., Chen, Y., Wheeler, N.V., Petrovich, M.N., Pu, M., Yvind, K., Galili, M., Oxenløwe, L.K., Richardson, D.J., Hu, H.: Super-broadband on-chip continuous spectral translation unlocking coherent optical communications beyond conventional telecom bands. Nat. Commun. Commun. 13(1), 4139 (2022)
CrossRef
Google scholar
|
[24] |
Xia, D., Huang, Y., Zhang, B., Yang, Z., Zeng, P., Shang, H., Cheng, H., Liu, L., Zhang, M., Zhu, Y., Li, Z.: On-chip broadband mid-infrared supercontinuum generation based on highly nonlinear chalcogenide glass waveguides. Front. Phys. 9, 598091 (2021)
CrossRef
Google scholar
|
[25] |
Oreshnikov, I., Melchert, O., Willms, S., Bose, S., Babushkin, I., Demircan, A., Morgner, U., Yulin, A.: Cherenkov radiation and scattering of external dispersive waves by two-color solitons. Phys. Rev. A 106(5), 053514 (2022)
CrossRef
Google scholar
|
[26] |
Kim, S., Han, K., Wang, C., Jaramillo-Villegas, J.A., Xue, X., Bao, C., Xuan, Y., Leaird, D.E., Weiner, A.M., Qi, M.: Dispersion engineering and frequency comb generation in thin silicon nitride concentric microresonators. Nat. Commun.Commun. 8(1), 372 (2017)
CrossRef
Google scholar
|
[27] |
Pan, J., Xia, D., Wang, Z., Zhang, B., Li, Z.: Chalcogenide chip-based frequency combs for advanced laser spectroscopy. J. Lightwave Technol. 41(13), 4065–4078 (2023)
CrossRef
Google scholar
|
[28] |
Wang, Z., Luo, L., Xia, D., Lu, S., Lin, G., Gao, S., Li, Z., Zhang, B.: Engineered octave frequency comb in integrated chalcogenide dual-ring microresonators. Front. Photon. 4, 1066993 (2023)
CrossRef
Google scholar
|
[29] |
Moille, G., Westly, D., Orji, N.G., Srinivasan, K.: Tailoring broadband Kerr soliton microcombs via post-fabrication tuning of the geometric dispersion. Appl. Phys. Lett. 119(12), 121103 (2021)
CrossRef
Google scholar
|
[30] |
Moille, G., Lu, X., Stone, J., Westly, D., Srinivasan, K.: Fourier synthesis dispersion engineering of photonic crystal microrings for broadband frequency combs. Commun. Phys.. Phys. 6(1), 144 (2023)
CrossRef
Google scholar
|
[31] |
Pfeiffer, M.H.P., Herkommer, C., Liu, J., Guo, H., Karpov, M., Lucas, E., Zervas, M., Kippenberg, T.J.: Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica 4(7), 684–691 (2017)
CrossRef
Google scholar
|
[32] |
Guo, Y., Jafari, Z., Xu, L., Bao, C., Liao, P., Li, G., Agarwal, A.M., Kimerling, L.C., Michel, J., Willner, A.E., Zhang, L.: Ultra-flat dispersion in an integrated waveguide with five and six zero-dispersion wavelengths for mid-infrared photonics. Photon. Res. 7(11), 1279–1286 (2019)
CrossRef
Google scholar
|
[33] |
Weng, H., Liu, J., Afridi, A.A., Li, J., Dai, J., Ma, X., Zhang, Y., Lu, Q., Donegan, J.F., Guo, W.: Directly accessing octavespanning dissipative Kerr soliton frequency combs in an AlN microresonator. Photon. Res. 9(7), 1351–1357 (2021)
CrossRef
Google scholar
|
[34] |
Gu, J., Li, X., Qi, K., Pu, K., Li, Z., Zhang, F., Li, T., Xie, Z., Xiao, M., Jiang, X.: Octave-spanning soliton microcomb in silica microdisk resonators. Opt. Lett. 48(5), 1100–1103 (2023)
CrossRef
Google scholar
|
[35] |
Song, Y., Hu, Y., Zhu, X., Yang, K., Loncar, M.: Octave-spanning Kerr soliton microcombs on thin-film lithium niobate. arXiv preprint arXiv: 2403.01107.(2024)
CrossRef
Google scholar
|
[36] |
Luke, K., Okawachi, Y., Lamont, M.R., Gaeta, A.L., Lipson, M.: Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett. 40(21), 4823–4826 (2015)
CrossRef
Google scholar
|
[37] |
Moille, G., Westly, D., Srinivasan, K.: Broadband visible wavelength microcomb generation in silicon nitride microrings through air-clad dispersion engineering. arXiv preprint arXiv: 2404.01577 (2024)
|
[38] |
Coen, S., Randle, H.G., Sylvestre, T., Erkintalo, M.: Modeling of octave-spanning Kerr frequency combs using a generalized meanfield Lugiato-Lefever model. Opt. Lett. 38(1), 37–39 (2013)
CrossRef
Google scholar
|
[39] |
Anderson, M.H., Weng, W., Lihachev, G., Tikan, A., Liu, J., Kippenberg, T.J.: Zero dispersion Kerr solitons in optical microresonators. Nat. Commun. Commun. 13(1), 4764 (2022)
CrossRef
Google scholar
|
[40] |
Yu, M., Okawachi, Y., Griffith, A.G., Lipson, M., Gaeta, A.L.: Modelocked mid-infrared frequency combs in a silicon microresonator. Optica 3(8), 854–860 (2016)
CrossRef
Google scholar
|
[41] |
Wang, W., Ming, X., Shi, L., Ma, K., Ren, D., Sun, Q., Wang, L., Zhang, W.: Broadband mid-infrared frequency comb generation in a large-cross-section silicon microresonator. IEEE Photonics J. 15(3), 1–6 (2023)
CrossRef
Google scholar
|
[42] |
Zhang, L., Bao, C., Singh, V., Mu, J., Yang, C., Agarwal, A.M., Kimerling, L.C., Michel, J.: Generation of two-cycle pulses and octave-spanning frequency combs in a dispersion-flattened micro-resonator. Opt. Lett. 38(23), 5122–5125 (2013)
CrossRef
Google scholar
|
[43] |
Coddington, I., Swann, W.C., Newbury, N.R.: Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100(1), 013902 (2008)
CrossRef
Google scholar
|
[44] |
Bernhardt, B., Ozawa, A., Jacquet, P., Jacquey, M., Kobayashi, Y., Udem, T., Holzwarth, R., Guelachvili, G., Hänsch, T.W., Picqué, N.: Cavity-enhanced dual-comb spectroscopy. Nat. Photonics 4(1), 55–57 (2010)
CrossRef
Google scholar
|
[45] |
Ycas, G., Giorgetta, F.R., Baumann, E., Coddington, I., Herman, D., Diddams, S.A., Newbury, N.R.: High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 μm. Nat. Photonics 12(4), 202–208 (2018)
CrossRef
Google scholar
|
/
〈 |
|
〉 |