Route-asymmetrical light transmission of a fiber-chip-fiber optomechanical system

Li LIU, Yunhong DING, Xinlun CAI, Jianji DONG, Xinliang ZHANG

PDF(336 KB)
PDF(336 KB)
Front. Optoelectron. ›› 2016, Vol. 9 ›› Issue (3) : 489-496. DOI: 10.1007/s12200-016-0560-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Route-asymmetrical light transmission of a fiber-chip-fiber optomechanical system

Author information +
History +

Abstract

In this paper, we proposed and experimentally demonstrated a route-asymmetrical light transmission scheme based on the thermal radiative effect, which means that forward and backward propagations of an optical device have different transmittances provided they are not present simultaneously. Employing a fiber-chip-fiber optomechanical system, our scheme has successfully achieved a broad operation bandwidth of at least 24 nm and an ultra-high route-asymmetrical transmission ratio (RATR) up to 63 dB. The route-asymmetrical device has been demonstrated effectively with not only the continuous-wave (CW) light but also 10 Gbit/s on-off-keying (OOK) digital signals. Above mentioned unique features can be mostly attributed to the significant characteristics of the thermal radiative effect, which could cause a fiber displacement up to tens of microns. The powerful and significant thermal radiative effect opens up a new opportunity and method for route-asymmetrical light transmission. Moreover, this research may have important applications in all-optical systems, such as the optical limiters and ultra-low loss switches.

Keywords

route-asymmetrical light transmission / thermal radiative effect / optomechanical system / route-asymmetrical transmission ratio (RATR)

Cite this article

Download citation ▾
Li LIU, Yunhong DING, Xinlun CAI, Jianji DONG, Xinliang ZHANG. Route-asymmetrical light transmission of a fiber-chip-fiber optomechanical system. Front. Optoelectron., 2016, 9(3): 489‒496 https://doi.org/10.1007/s12200-016-0560-0

References

[1]
Bi L, Hu J, Jiang P, Kim D H, Dionne G F, Kimerling L C, Ross C A. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators. Nature Photonics, 2011, 5(12): 758–762
CrossRef Google scholar
[2]
Shoji Y, Mizumoto T, Yokoi H, Hsieh I, Osgood R M. Magneto-optical isolator with silicon waveguides fabricated by direct bonding. Applied Physics Letters, 2008, 92(7): 071117-1–071117-3
CrossRef Google scholar
[3]
Espinola R L, Izuhara T, Tsai M, Osgood R M , Dötsch H. Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides. Optics Letters, 2004, 29(9): 941–943
CrossRef Pubmed Google scholar
[4]
Yokoi H, Mizumoto T, Shinjo N, Futakuchi N, Nakano Y. Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift. Applied Optics, 2000, 39(33): 6158–6164
CrossRef Pubmed Google scholar
[5]
Manipatruni S, Robinson J T, Lipson M. Optical nonreciprocity in optomechanical structures. Physical Review Letters, 2009, 102(21): 213903-1–213903-4
CrossRef Pubmed Google scholar
[6]
Shi Y, Yu Z, Fan S. Limitations of nonlinear optical isolators due to dynamic reciprocity. Nature Photonics, 2015, 9(6): 388–392
CrossRef Google scholar
[7]
Kang M S, Butsch A, Russell P S J. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nature Photonics, 2011, 5(9): 549–553
CrossRef Google scholar
[8]
Lira H, Yu Z, Fan S, Lipson M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Physical Review Letters, 2012, 109(3): 033901-1–033901-5
CrossRef Pubmed Google scholar
[9]
Yu Z, Fan S. Complete optical isolation created by indirect interband photonic transitions. Nature Photonics, 2009, 3(2): 91–94
CrossRef Google scholar
[10]
Aman H, Hussain B, Aman A. Laser diode corner pumped Nd:KGW slab laser. Frontiers of Optoelectronics, 2014, 7(1): 107–109
CrossRef Google scholar
[11]
Min S, Liao S, Zou C, Zhang X, Dong J. Route-asymmetrical optical transmission and logic gate based on optical gradient force. Optics Express, 2014, 22(21): 25947–25952PMID:25401628
CrossRef Google scholar
[12]
Gallo K, Assanto G, Parameswaran K R, Fejer M M. All-optical diode in a periodically poled lithium niobate waveguide. Applied Physics Letters, 2001, 79(3): 314–316
CrossRef Google scholar
[13]
Xu Q, Lipson M. All-optical logic based on silicon micro-ring resonators. Optics Express, 2007, 15(3): 924–929
CrossRef Pubmed Google scholar
[14]
Xu Q, Soref R. Reconfigurable optical directed-logic circuits using microresonator-based optical switches. Optics Express, 2011, 19(6): 5244–5259
CrossRef Pubmed Google scholar
[15]
Chu T, Yamada H, Ishida S, Arakawa Y. Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides. Optics Express, 2005, 13(25): 10109–10114 9
CrossRef Pubmed Google scholar
[16]
Notomi M, Shinya A, Mitsugi S, Kira G, Kuramochi E, Tanabe T. Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Optics Express, 2005, 13(7): 2678–2687
CrossRef Pubmed Google scholar
[17]
Pruessner M W, Stievater T H, Ferraro M S, Rabinovich W S. Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities. Optics Express, 2007, 15(12): 7557–7563
CrossRef Pubmed Google scholar
[18]
Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M, Qi M. An all-silicon passive optical diode. Science, 2012, 335(6067): 447–450
CrossRef Pubmed Google scholar
[19]
Fan L, Varghese L T, Wang J, Xuan Y, Weiner A M, Qi M. Silicon optical diode with 40 dB nonreciprocal transmission. Optics Letters, 2013, 38(8): 1259–1261
CrossRef Pubmed Google scholar
[20]
Tocci M D, Bloemer M J, Scalora M, Dowling J P, Bowden C M. Thin-film nonlinear optical diode. Applied Physics Letters, 1995, 66(18): 2324–2326
CrossRef Google scholar
[21]
Zhang Y, Li D, Zeng C, Huang Z, Wang Y, Huang Q, Wu Y, Yu J, Xia J. Silicon optical diode based on cascaded photonic crystal cavities. Optics Letters, 2014, 39(6): 1370–1373
CrossRef Pubmed Google scholar
[22]
Soljačić M, Luo C, Joannopoulos J D, Fan S. Nonlinear photonic crystal microdevices for optical integration. Optics Letters, 2003, 28(8): 637–639
CrossRef Pubmed Google scholar
[23]
Almeida V R, Lipson M. Optical bistability on a silicon chip. Optics Letters, 2004, 29(20): 2387–2389
CrossRef Pubmed Google scholar
[24]
Wurtz G A, Pollard R, Zayats A V. Optical bistability in nonlinear surface-plasmon polaritonic crystals. Physical Review Letters, 2006, 97(5): 057402-1–057402-4
CrossRef Pubmed Google scholar
[25]
Wang D, Zhou H, Guo M, Zhang J, Evers J, Zhu S. Optical diode made from a moving photonic crystal. Physical Review Letters, 2013, 110(9): 093901-1–093901-5
CrossRef Pubmed Google scholar
[26]
Liu V, Miller D A B, Fan S. Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect. Optics Express, 2012, 20(27): 28388–28397
CrossRef Pubmed Google scholar
[27]
Xue C, Jiang H, Chen H. Highly efficient all-optical diode action based on light-tunneling heterostructures. Optics Express, 2010, 18(7): 7479–7487
CrossRef Pubmed Google scholar
[28]
Xu J, Zhuang X, Guo P, Huang W, Hu W, Zhang Q, Wan Q, Zhu X, Yang Z, Tong L, Duan X, Pan A. Asymmetric light propagation in composition-graded semiconductor nanowires. Scientific Reports, 2012, 2(11): 820-1–820-7 PMID:23150783
[29]
Wang J. A special issue on Information Optoelectronics: Devices, Technologies and Applications. Frontiers of Optoelectronics, 2014, 7(3): 263–264
CrossRef Google scholar
[30]
Wachter E A, Thundat T, Oden P I, Warmack R J, Datskos P G, Sharp S L. Remote optical detection using microcantilevers. Review of Scientific Instruments, 1996, 67(10): 3434–3439
CrossRef Google scholar
[31]
Datskos P G, Lavrik N V, Rajic S. Performance of uncooled microcantilever thermal detectors. Review of Scientific Instruments, 2004, 75(4): 1134–1148
CrossRef Google scholar
[32]
Lavrik N V, Sepaniak M J, Datskos P G. Cantilever transducers as a platform for chemical and biological sensors. Review of Scientific Instruments, 2004, 75(7): 2229–2253
CrossRef Google scholar
[33]
Ding Y, Peucheret C, Ou H, Yvind K. Fully etched apodized grating coupler on the SOI platform with −0.58 dB coupling efficiency. Optics Letters, 2014, 39(18): 5348–5350
CrossRef Pubmed Google scholar
[34]
Taillaert D, Bienstman P, Baets R. Compact efficient broadband grating coupler for silicon-on-insulator waveguides. Optics Letters, 2004, 29(23): 2749–2751
CrossRef Pubmed Google scholar
[35]
Miller D A B. All linear optical devices are mode converters. Optics Express, 2012, 20(21): 23985–23993
CrossRef Pubmed Google scholar
[36]
Miller D A B. Self-aligning universal beam coupler. Optics Express, 2013, 21(5): 6360–6370
CrossRef Pubmed Google scholar

Acknowledgements

This work was partially supported by the National Basic Research Program of China (No. 2011CB301704), the Program for New Century Excellent Talents in Ministry of Education of China (No. NCET-11-0168), a Foundation for the Author of National Excellent Doctoral Dissertation of China (No. 201139), the National Natural Science Foundation of China (Grant Nos. 11174096 and 61475052), and the Opened Fund of the State Key Laboratory on Advanced Optical Communication System and Network (No. 2015GZKF03004).

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(336 KB)

Accesses

Citations

Detail

Sections
Recommended

/