Synthesis of silicon nanowires supported Ag nanoparticles and their catalytic activity in photo-degradation of Rhodamine B

Yueyin SHAO, Yongqian WEI, Zhenghua WANG

PDF(362 KB)
PDF(362 KB)
Front. Optoelectron. ›› 2011, Vol. 4 ›› Issue (2) : 171-175. DOI: 10.1007/s12200-011-0159-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Synthesis of silicon nanowires supported Ag nanoparticles and their catalytic activity in photo-degradation of Rhodamine B

Author information +
History +

Abstract

Silver modified silicon nanowires were obtained and employed as photo-catalysts in the degradation of Rhodamine B (RhB), which demonstrated the excellent catalytic activity. These catalysts may be recycled and reused.

Keywords

silicon nanowires / Ag nanoparticles / Rhodamine B (RhB)

Cite this article

Download citation ▾
Yueyin SHAO, Yongqian WEI, Zhenghua WANG. Synthesis of silicon nanowires supported Ag nanoparticles and their catalytic activity in photo-degradation of Rhodamine B. Front Optoelec Chin, 2011, 4(2): 171‒175 https://doi.org/10.1007/s12200-011-0159-4

References

[1]
Rondinini S, Vertova A. Electrocatalysis on silver and silver alloys for dichloromethane and trichloromethane dehalogenation. Electrochimica Acta, 2004, 49(22-23): 4035–4046
CrossRef Google scholar
[2]
Adhyapak P V, Karandikar P, Vijayamohanan K, Athawale A A, Chandwadkar A J. Synthesis of silver nanowires inside mesoporous MCM-41 host. Materials Letters, 2004, 58(7-8): 1168–1171
CrossRef Google scholar
[3]
Carotenuto G, Pepe G P, Nicolais L. Preparation and characterization of nano-sized Ag/PVP composites for optical applications. European Physical Journal B, 2000, 16(1): 11–17
CrossRef Google scholar
[4]
Grubisha D S, Lipert R J, Park H Y, Driskell J, Porter M D. Femtomolar detection of prostate-specific antigen: an immunoassay based on surface-enhanced Raman scattering and immunogold labels. Analytical Chemistry, 2003, 75(21): 5936–5943
CrossRef Google scholar
[5]
García-Vidal F J, Pendry J B. Collective theory for surface enhanced Raman scattering. Physical Review Letters, 1996, 77(6): 1163–1166
CrossRef Google scholar
[6]
Jana N R, Gearheart L, Murphy C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Advanced Materials, 2001, 13(18): 1389–1393
CrossRef Google scholar
[7]
Jana N R, Gearheart L, Murphy C J. Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chemistry of Materials, 2001, 13(7): 2313–2322
CrossRef Google scholar
[8]
Murphy C J, Jana N R. Controlling the aspect ratio of inorganic nanorods and nanowires. Advanced Materials, 2002, 14(1): 80–82
CrossRef Google scholar
[9]
Jin R C, Cao Y C, Hao E C, Métraux G S, Schatz G C, Mirkin C A. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature, 2003, 425(6957): 487–490
CrossRef Google scholar
[10]
Maillard M, Huang P R, Brus L. Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed. Nano Letters, 2003, 3(11): 1611–1615
CrossRef Google scholar
[11]
Hua F, Cui T H, Lvov Y. Lithographic approach to pattern self-assembled nanoparticle multilayers. Langmuir, 2002, 18(17): 6712–6715
CrossRef Google scholar
[12]
Haynes C L, Van Duyne R P. Dichroic optical properties of extended nanostructures fabricated using angle-resolved nanosphere lithography. Nano Letters, 2003, 3(7): 939–943
CrossRef Google scholar
[13]
Porter L A, Choi H C, Ribbe A E, Buriak J M. Controlled electroless deposition of noble metal nanoparticle films on germanium surfaces. Nano Letters, 2002, 2(10): 1067–1071
CrossRef Google scholar
[14]
Keir R, Igata E, Arundell M, Smith W E, Graham D, McHugh C, Cooper J M. SERRS. In situ substrate formation and improved detection using microfluidics. Analytical Chemistry, 2002, 74(7): 1503–1508
CrossRef Google scholar
[15]
Zhu G S, Wang C, Zhang Y H, Guo N, Zhao Y Y, Wang R W, Qiu S L, Wei Y, Baughman R H. Highly effective sulfated zirconia nanocatalysts grown out of colloidal silica at high temperature. Chemistry, 2004, 10(19): 4750–4754
CrossRef Google scholar
[16]
Liu Z Q, Zhou W Y, Sun L F, Tang D S, Zou X P, Li Y B, Wang C Y, Wang G, Xie S S. Growth of amorphous silicon nanowires. Chemical Physics Letters, 2001, 341(5-6): 523–528
CrossRef Google scholar
[17]
Kamins T I, Williams R S, Chen Y, Chang Y L, Chang Y A. Chemical vapor deposition of Si nanowires nucleated by TiSi2 islands on Si. Applied Physics Letters, 2000, 76(5): 562–564
CrossRef Google scholar
[18]
Shao M W, Hu H, Li M, Ban H Z, Wang M Y, Jiang J. Karman vortex street assisted patterning in the growth of silicon nanowires. Chemical Communications, 2007, (8): 793–794
CrossRef Google scholar
[19]
Li C P, Sun X H, Wong N B, Lee C S, Lee S T, Teo B K. Silicon nanowires wrapped with Au film. Journal of Physical Chemistry B, 2002, 106(28): 6980–6984
CrossRef Google scholar
[20]
Cui Y, Wei Q Q, Park H K, Lieber C M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293(5533): 1289–1292
CrossRef Google scholar
[21]
Ren X, Meng X W, Chen D, Tang F Q, Jiao J. Using silver nanoparticle to enhance current response of biosensor. Biosensors & Bioelectronics, 2005, 21(3): 433–437
CrossRef Google scholar

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 20701001).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(362 KB)

Accesses

Citations

Detail

Sections
Recommended

/