Digital microfluidics: A promising technique for biochemical applications

He WANG, Liguo CHEN, Lining SUN

PDF(770 KB)
PDF(770 KB)
Front. Mech. Eng. ›› 2017, Vol. 12 ›› Issue (4) : 510-525. DOI: 10.1007/s11465-017-0460-z
REVIEW ARTICLE

Digital microfluidics: A promising technique for biochemical applications

Author information +
History +

Abstract

Digital microfluidics (DMF) is a versatile microfluidics technology that has significant application potential in the areas of automation and miniaturization. In DMF, discrete droplets containing samples and reagents are controlled to implement a series of operations via electrowetting-on-dielectric. This process works by applying electrical potentials to an array of electrodes coated with a hydrophobic dielectric layer. Unlike microchannels, DMF facilitates precise control over multiple reaction processes without using complex pump, microvalve, and tubing networks. DMF also presents other distinct features, such as portability, less sample consumption, shorter chemical reaction time, flexibility, and easier combination with other technology types. Due to its unique advantages, DMF has been applied to a broad range of fields (e.g., chemistry, biology, medicine, and environment). This study reviews the basic principles of droplet actuation, configuration design, and fabrication of the DMF device, as well as discusses the latest progress in DMF from the biochemistry perspective.

Keywords

digital microfluidics / electrowetting on dielectric / discrete droplet / biochemistry

Cite this article

Download citation ▾
He WANG, Liguo CHEN, Lining SUN. Digital microfluidics: A promising technique for biochemical applications. Front. Mech. Eng., 2017, 12(4): 510‒525 https://doi.org/10.1007/s11465-017-0460-z

References

[1]
Terry S C, Jerman J H, Angell J B. A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Transactions on Electron Devices, 1979, 26(12): 1880–1886
CrossRef Google scholar
[2]
Reyes D R, Iossifidis D, Auroux P A,  Micro total analysis system. 1. Introduction, theory, and technology. Analitical Chemistry, 2002, 74(12): 2623–2636
CrossRef Google scholar
[3]
Mugele F, Baret J C. Electrowetting: From basics to applications. Journal of Physics Condensed Matter, 2005, 17(28): R705–R774
CrossRef Google scholar
[4]
Pollack M G, Shenderov A D, Fair R B. Electrowetting-based actuation of droplets for integrated microfluidics. Lab on a Chip, 2002, 2(2): 96–101
CrossRef Google scholar
[5]
Washizu M. Electrostatic actuation of liquid droplets for microreactor applications. IEEE Transactions on Industry Applications, 1998, 34(4): 732–737
CrossRef Google scholar
[6]
Cho S K, Fan S K, Moon H,  Towards digital microfluidic circuits: Creating, transporting, cutting and merging liquid droplets by electrowetting-based actuation. In: Proceedings of the Fifteenth IEEE International Conference on Micro Electro Mechanical Systems. Las Vegas: IEEE, 2002, 32–35
CrossRef Google scholar
[7]
Cho S K, Moon H, Kim C J. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. Journal of Microelectromechanical Systems, 2003, 12(1): 70–80
CrossRef Google scholar
[8]
Berthier J. Microdrops and Digital Microfluidics. Norwich: William Andrew Inc., 2008
[9]
Wang W, Jones T B. Moving droplets between closed and open microfluidic systems. Lab on a Chip, 2015, 15(10): 2201–2212
CrossRef Google scholar
[10]
Wheeler A R. Putting electrowetting to work. Science, 2008, 322(5901): 539–540
CrossRef Google scholar
[11]
Hsieh T H, Fan S K. Dielectric droplet manipulations by electropolarization forces. In: Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems. Piskataway: IEEE, 2008, 641–644
[12]
Jones T B, Wang K L, Yao D J. Frequency-dependent electromechanics of aqueous liquids: Electrowetting and dielectrophoresis. Langmuir, 2004, 20(7): 2813–2818 
CrossRef Google scholar
[13]
Mugele F, Baret J C. Electrowetting: From basics to applications. Journal of Physics Condensed Matter, 2005, 17(28): R705–R774
CrossRef Google scholar
[14]
Gupta R, Sheth D M, Boone T K,  Impact of pinning of the triple contact line on electrowetting performance. Langmuir, 2011, 27(24): 14923–14929
CrossRef Google scholar
[15]
Chen L Q, Bonaccurso E. Electrowetting—From statics to dynamics. Advances in Colloid and Interface Science, 2014, 210: 2–12
CrossRef Google scholar
[16]
Kang K H. How electrostatic fields change contact angle in electrowetting. Langmuir, 2002, 18(26): 10318–10322
CrossRef Google scholar
[17]
Peykov V, Quinn A, Ralston J. Electrowetting: A model for contact-angle saturation. Colloid & Polymer Science, 2000, 278(8): 789–793
CrossRef Google scholar
[18]
Darhuber A A, Chen J Z, Davis J M,  A study of mixing in thermocapillary flows on micropatterned surfaces.  Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362(1818): 1037–1058 
CrossRef Google scholar
[19]
Darhuber A A, Valentino J P, Troian S M. Planar digital nanoliter dispensing system based on thermocapillary actuation. Lab on a Chip, 2010, 10(8): 1061–1071
CrossRef Google scholar
[20]
Heron S R, Wilson R, Shaffer S A,  Surface acoustic wave nebulization of peptides as a microfluidic interface for mass spectrometry. Analytical Chemistry, 2010, 82(10): 3985–3989
CrossRef Google scholar
[21]
Jin H, Zhou J, He X,  Flexible surface acoustic wave resonators built on disposable plastic film for electronics and lab-on-a-chip applications. Scientific Reports, 2013, 3: 2140
CrossRef Google scholar
[22]
Pang H, Fu Y, Garcia-Gancedo L,  Enhancement of microfluidic efficiency with nanocrystalline diamond interlayer in the ZnO-based surface acoustic wave device. Microfluidics and Nanofluidics, 2013, 15(3): 377–386 
CrossRef Google scholar
[23]
Shilton R J, Mattoli V, Travagliati M,  Rapid and controllable digital microfluidic heating by surface acoustic waves. Advanced Functional Materials, 2015, 25(37): 5895–5901
CrossRef Google scholar
[24]
Seemann R, Brinkmann M, Pfohl T,  Droplet based microfluidics. Reports on Progress in Physics, 2012, 75(1): 016601
CrossRef Google scholar
[25]
Gu H, Duits M H G, Mugele F. Droplets formation and merging in two-phase flow microfluidics. International Journal of Molecular Sciences, 2011, 12(12): 2572–2597
CrossRef Google scholar
[26]
Renaudot R, Agache V, Daunay B,  Optimization of liquid dielectrophoresis (LDEP) digital microfluidic transduction for biomedical applications. Micromachines, 2011, 2(4): 258–273
CrossRef Google scholar
[27]
Renaudot R, Daunay B, Kumemura M,  Optimized micro devices for liquid-dielectrophoresis (LDEP) actuation of conductive solutions. Sensors and Actuators B: Chemical, 2013, 177: 620–626 
CrossRef Google scholar
[28]
Timonen J V I, Latikka M, Leibler L,  Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces. Science, 2013, 341(6143): 253–257
CrossRef Google scholar
[29]
Ng A H C, Choi K, Luoma R P,  Digital microfluidic magnetic separation for particle-based immunoassays. Analytical Chemistry, 2012, 84(20): 8805–8812
CrossRef Google scholar
[30]
Witters D, Knez K, Ceyssens F,  Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets. Lab on a Chip, 2013, 13(11): 2047–2054
CrossRef Google scholar
[31]
Shi D, Bi Q, He Y,  Experimental investigation on falling ferrofluid droplets in vertical magnetic fields. Experimental Thermal and Fluid Science, 2014, 54: 313–320
CrossRef Google scholar
[32]
Choi K, Ng A H C, Fobel R,  Digital microfluidics. Annual Review of Analytical Chemistry, 2012, 5(1): 413–440 
CrossRef Google scholar
[33]
Kumar A, Williams S J, Chuang H S,  Hybrid opto-electric manipulation in microfluidics—Opportunities and challenges. Lab on a Chip, 2011, 11(13): 2135–2148
CrossRef Google scholar
[34]
Takinoue M, Takeuchi S. Droplet microfluidics for the study of artificial cells. Analytical and Bioanalytical Chemistry, 2011, 400(6): 1705–1716
CrossRef Google scholar
[35]
Vergauwe N, Witters D, Atalay Y T,  Controlling droplet size variability of a digital lab-on-a-chip for improved bio-assay performance. Microfluidics and Nanofluidics, 2011, 11(1): 25–34
CrossRef Google scholar
[36]
Yaddessalage J B. Study of the capabilities of electrowetting on dielectric digital microfluidics (EWOD DMF) towards the high efficient thin-film evaporative cooling platform. Dissertation for the Doctoral Degree. Arlington: The University of Texas at Arlington, 2013
[37]
Elvira K S, Leatherbarrow R, Edel J,  Droplet dispensing in digital microfluidic devices: Assessment of long-term reproducibility. Biomicrofluidics, 2012, 6(2): 022003
CrossRef Google scholar
[38]
Yafia M, Najjaran H. High precision control of gap height for enhancing principal digital microfluidics operations. Sensors and Actuators B: Chemical, 2013, 186: 343–352
CrossRef Google scholar
[39]
Chang J H, Pak J J. Twin-plate electrowetting for efficient digital microfluidics. Sensors and Actuators B: Chemical, 2011, 160(1): 1581–1585
CrossRef Google scholar
[40]
Cui W, Zhang M, Zhang D,  Island-ground single-plate electro-wetting on dielectric device for digital microfluidic systems. Applied Physics Letters, 2014, 105(1): 013509
CrossRef Google scholar
[41]
Ko H, Lee J, Kim Y,  Active digital microfluidic paper chips with inkjet-printed patterned electrodes. Advanced Materials, 2014, 26(15): 2335–2340 
CrossRef Google scholar
[42]
Fobel R, Kirby A E, Ng A H C,  Paper microfluidics goes digital. Advanced Materials, 2014, 26(18): 2838–2843
CrossRef Google scholar
[43]
Fobel R, Kirby A E, Wheeler A R. Paper microfluidics goes digital. In: Proceedings of 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS. Freiburg: Chemical and Biological Microsystems Society, 2013, 708–710
[44]
Dixon C, Kirby A E, Fobel R,  Paper digital microfluidics and paper spray ionization mass spectrometry. In: Proceedings of 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS. San Antonio: Chemical and Biological Microsystems Society, 2014, 2196–2198
[45]
Dixon C, Ng A H C, Fobel R,  An inkjet printed, roll-coated digital microfluidic device for inexpensive, miniaturized diagnostic assays. Lab on a Chip, 2016, 16(23): 4560–4568
CrossRef Google scholar
[46]
Yafia M, Shukla S, Najjaran H. Fabrication of digital microfluidic devices on flexible paper-based and rigid substrates via screen printing. Journal of Micromechanics and Microengineering, 2015, 25(5): 057001
CrossRef Google scholar
[47]
Taniguchi T, Torii T, Higuchi T. Chemical reactions in microdroplets by electrostatic manipulation of droplets in liquid media. Lab on a Chip, 2002, 2(1): 19–23
CrossRef Google scholar
[48]
Ito T, Torii T, Higuchi T. Electrostatic micromanipulation of bubbles for microreactor applications. In: Proceedings of IEEE the Sixteenth Annual International Conference on Micro Electro Mechanical System. Kyoto: IEEE, 2003, 335–338 
CrossRef Google scholar
[49]
Sista R S, Eckhardt A E, Wang T,  Digital microfluidic platform for multiplexing enzyme assays: Implications for lysosomal storage disease screening in newborns. Clinical Chemistry, 2011, 57(10): 1444–1451
CrossRef Google scholar
[50]
Boles D J, Benton J L, Siew G J,  Droplet-based pyrosequencing using digital microfluidics. Analytical Chemistry, 2011, 83(22): 8439–8447
CrossRef Google scholar
[51]
Choi K, Boyacı E, Kim J,  A digital microfluidic interface between solid-phase microextraction and liquid chromatography—Mass spectrometry. Journal of Chromatography A, 2016, 1444: 1–7 
CrossRef Google scholar
[52]
Keng P Y, Chen S, Ding H J,  Micro-chemical synthesis of molecular probes on an electronic microfluidic device. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(3): 690–695
CrossRef Google scholar
[53]
Dooraghi A A, Keng P Y, Chen S,  Optimization of microfluidic PET tracer synthesis with Cerenkov imaging. Analyst (London), 2013, 138(19): 5654–5664
CrossRef Google scholar
[54]
Witters D, Vergauwe N, Ameloot R,  Digital microfluidic high-throughput printing of single metal-organic framework crystals. Advanced Materials, 2012, 24(10): 1316–1320
CrossRef Google scholar
[55]
Shamsi M H, Choi K, Ng A H C,  A digital microfluidic electrochemical immunoassay. Lab on a Chip, 2014, 14(3): 547–554
CrossRef Google scholar
[56]
Ng A H C, Lee M, Choi K,  Digital microfluidic platform for the detection of rubella infection and immunity: A proof of concept. Clinical Chemistry, 2015, 61(2): 420–429
CrossRef Google scholar
[57]
Miller E M, Ng A H C, Uddayasankar U,  A digital microfluidic approach to heterogeneous immunoassays. Analytical and Bioanalytical Chemistry, 2011, 399(1): 337–345
CrossRef Google scholar
[58]
Sista R S, Eckhardt A E, Srinivasan V,  Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform. Lab on a Chip, 2008, 8(12): 2188–2196
CrossRef Google scholar
[59]
Fair R B. Digital microfluidics: Is a true lab-on-a-chip possible? Microfluidics and Nanofluidics, 2007, 3(3): 245–281
CrossRef Google scholar
[60]
Yoon J Y, Garrell R L. Preventing biomolecular adsorption in electrowetting-based biofluidic chips. Analytical Chemistry, 2003, 75(19): 5097–5102 
CrossRef Google scholar
[61]
Shah G J, Kim C J. Meniscus-assisted high-efficiency magnetic collection and separation for EWOD droplet microfluidics. Journal of Microelectromechanical Systems, 2009, 18(2): 363–375
CrossRef Google scholar
[62]
Barbulovic-Nad I, Au S H, Wheeler A R. A microfluidic platform for complete mammalian cell culture. Lab on a Chip, 2010, 10(12): 1536–1542
CrossRef Google scholar
[63]
Choi K, Ng A H C, Fobel R,  Automated digital microfluidic platform for magnetic-particle-based immunoassays with optimization by design of experiments. Analytical Chemistry, 2013, 85(20): 9638–9646
CrossRef Google scholar
[64]
Huang C Y, Tsai P Y, Lee I C,  A highly efficient bead extraction technique with low bead number for digital microfluidic immunoassay. Biomicrofluidics, 2016, 10(1): 011901
CrossRef Google scholar
[65]
Au S H, Shih S C C, Wheeler A R. Integrated microbioreactor for culture and analysis of bacteria, algae and yeast. Biomedical Microdevices, 2011, 13(1): 41–50
CrossRef Google scholar
[66]
Shih S C C, Gach P C, Sustarich J,  A droplet-to-digital (D2D) microfluidic device for single cell assays. Lab on a Chip, 2015, 15(1): 225–236
CrossRef Google scholar
[67]
Eydelnant I A, Uddayasankar U, Li B,  Virtual microwells for digital microfluidic reagent dispensing and cell culture. Lab on a Chip, 2012, 12(4): 750–757
CrossRef Google scholar
[68]
Bogojevic D, Chamberlain M D, Barbulovic-Nad I,  A digital microfluidic method for multiplexed cell-based apoptosis assays. Lab on a Chip, 2012, 12(3): 627–634
CrossRef Google scholar
[69]
Fiddes L K, Luk V N, Au S H,  Hydrogel discs for digital microfluidics. Biomicrofluidics, 2012, 6(1): 014112
CrossRef Google scholar
[70]
George S M, Moon H. Digital microfluidic three-dimensional cell culture and chemical screening platform using alginate hydrogels. Biomicrofluidics, 2015, 9(2): 024116
CrossRef Google scholar
[71]
Au S H, Chamberlain M D, Mahesh S,  Hepatic organoids for microfluidic drug screening. Lab on a Chip, 2014, 14(17): 3290–3299
CrossRef Google scholar
[72]
Nejad H R, Chowdhury O Z, Buat M D,  Characterization of the geometry of negative dielectrophoresis traps for particle immobilization in digital microfluidic platforms. Lab on a Chip, 2013, 13(9): 1823–1830
CrossRef Google scholar
[73]
Valley J K, Ningpei S, Jamshidi A,  A unified platform for optoelectrowetting and optoelectronic tweezers. Lab on a Chip, 2011, 11(7): 1292–1297
CrossRef Google scholar
[74]
Kumar P T, Toffalini F, Witters D,  Digital microfluidic chip technology for water permeability measurements on single isolated plant protoplasts. Sensors and Actuators B: Chemical, 2014, 199: 479–487
CrossRef Google scholar
[75]
Schell W A, Benton J L, Smith P B,  Evaluation of a digital microfluidic real-time PCR platform to detect DNA of Candida albicans in blood. European Journal of Clinical Microbiology & Infectious Diseases, 2012, 31(9): 2237–2245
CrossRef Google scholar
[76]
Hung P Y, Jiang P S, Lee E F,  Genomic DNA extraction from whole blood using a digital microfluidic (DMF) platform with magnetic beads. Microsystem Technologies, 2015, 21: 1–8
[77]
Yehezkel T B, Rival A, Raz O,  Synthesis and cell-free cloning of DNA libraries using programmable microfluidics. Nucleic Acids Research, 2015, 44: 1–12
[78]
Welch E R F, Lin Y Y, Madison A,  Picoliter DNA sequencing chemistry on an electrowetting-based digital microfluidic platform. Biotechnology Journal, 2011, 6(2): 165–176
CrossRef Google scholar
[79]
Kim H, Bartsch M S, Renzi R F,  Automated digital microfluidic sample preparation for next-generation DNA sequencing. Journal of Laboratory Automation, 2011, 16(6): 405–414
CrossRef Google scholar
[80]
Kim H, Jebrail M J, Sinha A,  A microfluidic DNA library preparation platform for next-generation sequencing. PLoS One, 2013, 8(7): e68988
CrossRef Google scholar
[81]
Wheeler A R, Moon H, Bird C A,  Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS. Analytical Chemistry, 2005, 77(2): 534–540
CrossRef Google scholar
[82]
Wheeler A R, Moon H, Kim C J,  Electrowetting-based microfluidics for analysis of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry. Analytical Chemistry, 2004, 76(16): 4833–4838
CrossRef Google scholar
[83]
Luk V N, Fiddes L K, Luk V M,  Digital microfluidic hydrogel microreactors for proteomics. Proteomics, 2012, 12(9): 1310–1318
CrossRef Google scholar
[84]
Aijian A P, Chatterjee D, Garrell R L. Fluorinated liquid-enabled protein handling and surfactant-aided crystallization for fully in situ digital microfluidic MALDI-MS analysis. Lab on a Chip, 2012, 12(14): 2552–2559
CrossRef Google scholar

Acknowledgements

This work was supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20133201110009).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(770 KB)

Accesses

Citations

Detail

Sections
Recommended

/