PDF
(844KB)
Abstract
This paper presents a brief review of the current casting techniques for single-crystal (SC) blades, as well as an analysis of the solidification process in complex turbine blades. A series of novel casting methods based on the Bridgman process were presented to illustrate the development in the production of SC blades from superalloys. The grain continuator and the heat conductor techniques were developed to remove geometry-related grain defects. In these techniques, the heat barrier that hinders lateral SC growth from the blade airfoil into the extremities of the platform is minimized. The parallel heating and cooling system was developed to achieve symmetric thermal conditions for SC solidification in blade clusters, thus considerably decreasing the negative shadow effect and its related defects in the current Bridgman process. The dipping and heaving technique, in which thin-shell molds are utilized, was developed to enable the establishment of a high temperature gradient for SC growth and the freckle-free solidification of superalloy castings. Moreover, by applying the targeted cooling and heating technique, a novel concept for the three-dimensional and precise control of SC growth, a proper thermal arrangement may be dynamically established for the microscopic control of SC growth in the critical areas of large industrial gas turbine blades.
Keywords
superalloy
/
investment casting
/
Bridgman process
/
directional solidification
/
single crystal
/
turbine blade
Cite this article
Download citation ▾
Dexin MA.
Novel casting processes for single-crystal turbine blades of superalloys.
Front. Mech. Eng., 2018, 13(1): 3-16 DOI:10.1007/s11465-018-0475-0
| [1] |
Versnyder F L, Shank M E. The development of columnar grain and single crystal high temperature materials through directional solidification. Materials Science and Engineering, 1970, 6(4): 213–247
|
| [2] |
Pratt D C. Industrial casting of superalloys. Materials Science and Technology, 1986, 2(5): 426–435
|
| [3] |
Quested P N, Osgerby S. Mechanical properties of conventionally cast, directionally solidified and single-crystal superalloys. Materials Science and Technology, 1986, 2(5): 461–475
|
| [4] |
Gebhardt A. Rapid Prototyping. Munich: Carl Hanser Verlag, 2006
|
| [5] |
Feriera J C, Santos E, Madureira H, Integration of VP/RP/RT/RE/RM for rapid product and process development. Rapid Prototyping Journal, 2006, 12(1): 18–28
|
| [6] |
Budzik G, Markowski T, Sobolak M. Hybrid foundry patterns of bevel gears. Archives of Foundry Engineering, 2007, 7(1): 131–134
|
| [7] |
Pattnaik S, Jha P K, Karunakar D B. A review of rapid prototyping integrated investment casting processes. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, 2014, 228(4): 249–277
|
| [8] |
Bridgman P W. US Patent, 1793672, 1931-02-24
|
| [9] |
Erickson J S, Owczarski W A, Curran P W. Process speeds up directional solidification. Metal Progress, 1971, 99: 58–60
|
| [10] |
Pratt D C. Industrial casting of superalloys. Materials Science and Technology, 1986, 2(5): 426–435
|
| [11] |
Elliott A J, Pollock T M, Tin S, Directional solidification of large superalloy castings with radiation and liquid-metal cooling: A comparative assessment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35(10): 3221–3231
|
| [12] |
Tschinkel J G, Giamei A F, Kearn B H. US Patent, 3763926, 1973-10-09
|
| [13] |
Giamei A F, Tschinkel J G. Liquid metal cooling: A new solidification technique. Metallurgical Transactions and Materials Transactions A: Physical Metallurgy and Materials Science, 1976, 7(9): 1427–1434
|
| [14] |
Elliott A J. Directional solidification of large cross-section Ni-base superalloy castings via liquid-metal cooling. Dissertation for the Doctoral Degree. Ann Arbor: The University of Michigan, 2005
|
| [15] |
Liu L, Huang T, Qu M, High thermal gradient directional solidification and its application in the processing of nickel-based superalloys. Journal of Materials Processing Technology, 2010, 210(1): 159–165
|
| [16] |
Zhang J, Luo L. Directional solidification assisted by liquid metal cooling. Journal of Materials Science and Technology, 2007, 23: 289–300
|
| [17] |
Lohmüller A, Eßer W, Großmann J, Improved quality and economics of investment castings by liquid metal cooling—The selection of cooling media. In: Proceedings of International Symposium on Superalloys. 2000, 181–188
|
| [18] |
Konter M, Kats E, Hofmann N. A novel casting process for single crystal gas turbine components. In: Proceedings of International Symposium on Superalloys. 2000, 189–200
|
| [19] |
Wagner A, Shollock B A, McLean M. Grain structure development in directional solidification of nickel-base superalloys. Materials Science and Engineering A, 2004, 374(1–2): 270–279
|
| [20] |
Meyer ter Vehn M, Dedecke D, Paul U, Undercooling related casting defects in SC turbine blades. In: Proceedings of International Symposium on Superalloys. 1996, 471–479
|
| [21] |
Zhou Y. Formation of stray grains during directional solidification of a nickel-based superalloy. Scripta Materialia, 2011, 65(4): 281–284
|
| [22] |
Tschinkel J G, Giamei A F, Kearn B H. US Patent, 3763926, 1973-10-09
|
| [23] |
Yang X L, Dong H B, Wang W, et al. Microscale simulation of stray grain formation in investment cast turbine blades. Materials Science and Engineering: A, 2004, 386(1–2): 129–139
|
| [24] |
Xuan W, Ren Z, Liu H, Formation of stray grains in directionally solidified Ni-based superalloys with cross-section change regions. Materials Science Forum, 2013, 747–748: 535–539
|
| [25] |
Xuan W, Ren Z, Li C, Formation of stray grain in cross section area for Ni-based superalloy during directional solidification. IOP Conference Series: Materials Science and Engineering, 2011, 27: 012035
|
| [26] |
Zhang J, Huang T, Liu L, Advances in solidification characteristics and typical casting defects in nickel-based single crystal superalloys. Acta Metallurgica Sinica, 2015, 51(10): 1163–1178 (in Chinese)
|
| [27] |
Xuan W, Ren Z, Li C. Experimental evidence of the effect of a high magnetic field on the stray grains formation in cross-section change region for Ni-based superalloy during directional solidification. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2015, 46(4): 1461–1466
|
| [28] |
Ma D, Wu Q, Bührig-Polaczek A. Undercoolability of superalloys and solidification defects in single crystal components. Advanced Materials Research, 2011, 278: 417–422
|
| [29] |
Ma D, Bührig-Polaczek A. Application of heat-conductor technique to production of SC turbine blade. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science, 2009, 40(5): 738–748
|
| [30] |
Ma D. Development of single crystal solidification technology for production of superalloy turbine blades. Acta Metallurgica Sinica, 2015, 51(10): 1179–1190 (in Chinese)
|
| [31] |
Ma D, Bührig-Polaczek A. Avoiding grain defects in single crystal components by application of a heat conductor technique. International Journal of Materials Research, 2009, 100(8): 1145–1151
|
| [32] |
Ma D, Bührig-Polaczek A. Development of heat conductor technique for single crystal components of superalloys. International Journal of Cast Metals Research, 2009, 22(6): 422–429
|
| [33] |
Yu J, Xu Q, Cui K, Numerical simulation of solidification process on single crystal Ni-based superalloy investment castings. Journal of Materials Science and Technology, 2007, 23(1): 47–54
|
| [34] |
Napolitano R E, Schaefer R J. The convergence-fault mechanism for low-angle boundary formation in single-crystal castings. Journal of Materials Science, 2000, 35(7): 1641–1659
|
| [35] |
Ma D, Wu Q, Bührig-Polaczek A. Investigation on the asymmetry of thermal condition and grain defect formation in customary directional solidification process. IOP Conference Series: Materials Science and Engineering, 2011, 27: 012037
|
| [36] |
Ma D, Wu Q, Bührig-Polaczek A. Some new observations on freckle formation in directionally solidified superalloy components. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science, 2012, 43(2): 344–353
|
| [37] |
Ma D, Bührig-Polaczek A. The influence of surface roughness on freckle formation in directionally solidified superalloy samples. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science, 2012, 43(4): 671–677
|
| [38] |
Ma D, Bührig-Polaczek A. The geometry effect of freckle formation in the directionally solidified superalloy CMSX-4. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2014, 45(3): 1435–1444
|
| [39] |
Ma D, Wang F, Wu Q, Innovation of casting techniques for single crystal turbine blades of superalloys. In: Proceedings of International Symposium on Superalloys. 2016, 237–246
|
| [40] |
Ma D, Lu H, Bührig-Polaczek A. Experimental trials of the thin shell casting (TSC) technology for directional solidification. IOP Conference Series: Materials Science and Engineering, 2011, 27: 012036
|
| [41] |
Wang F, Ma D, Zhang J, A high thermal gradient directional solidification method for growing superalloy single crystals. Journal of Materials Processing Technology, 2014, 214(12): 3112–3121
|
| [42] |
Wang F, Ma D, Bogner S, Comparative investigation of the downward and upward directionally solidified single-crystal blades of superalloy CMSX-4. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2016, 47(5): 2376–2386
|
| [43] |
Ma D, Grafe U. Dendrite growth and microsegregation during directional solidification: An analytical model and experimental studies on the superalloys CMSX-4. International Journal of Cast Metals Research, 2000, 13(2): 85–92
|
| [44] |
Ma D, Grafe U. Microsegregation in directionally solidified dendritic-cellular structure of superalloy CMSX-4. Materials Science and Engineering A, 1999, 270(2): 339–342
|
| [45] |
Feng Q, Carroll L J, Pollock T M. Solidification segregation in Ruthenium-containing nickel-base superalloys. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2006, 37(6): 1949–1962
|
| [46] |
Caldwell E C, Fela F J, Fuchs G E. Segregation of elements in high refractory content single crystal nickel based superalloys. In: Proceedings of International Symposium on Superalloys. 2004. 811–818
|
| [47] |
Caldwell E C, Fela F J, Fuchs G E. The segregation of elements in high-refractory-content single-crystal nickel-based superalloys. Journal of Minerals, Metals and Materials, 2004, 56(9): 44–48
|
| [48] |
Heckl A, Rettig R, Singer R F. Solidification characteristics and segregation behavior of nickel-base superalloys in dependence on different rhenium and ruthenium contents. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2010, 41(1): 202–211
|
| [49] |
Wang F, Ma D, Zhang J, Investigation of segregation and density profiles in the mushy zone of CMSX-4 superalloy solidified during downward and upward directional solidification processes. Journal of Alloys and Compounds, 2015, 620: 24–30
|
| [50] |
Wang F, Ma D, Bogner S, Comparative study of the segregation behavior and crystallographic orientation in a nickel-based single-crystal superalloy. Journal of Alloys and Compounds, 2015, 647: 528–532
|
RIGHTS & PERMISSIONS
The Author(s) 2018. This article is published with open access at link.springer.com and journal.hep.com.cn