Novel casting processes for single-crystal turbine blades of superalloys

Dexin MA

Front. Mech. Eng. ›› 2018, Vol. 13 ›› Issue (1) : 3 -16.

PDF (844KB)
Front. Mech. Eng. ›› 2018, Vol. 13 ›› Issue (1) : 3 -16. DOI: 10.1007/s11465-018-0475-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Novel casting processes for single-crystal turbine blades of superalloys

Author information +
History +
PDF (844KB)

Abstract

This paper presents a brief review of the current casting techniques for single-crystal (SC) blades, as well as an analysis of the solidification process in complex turbine blades. A series of novel casting methods based on the Bridgman process were presented to illustrate the development in the production of SC blades from superalloys. The grain continuator and the heat conductor techniques were developed to remove geometry-related grain defects. In these techniques, the heat barrier that hinders lateral SC growth from the blade airfoil into the extremities of the platform is minimized. The parallel heating and cooling system was developed to achieve symmetric thermal conditions for SC solidification in blade clusters, thus considerably decreasing the negative shadow effect and its related defects in the current Bridgman process. The dipping and heaving technique, in which thin-shell molds are utilized, was developed to enable the establishment of a high temperature gradient for SC growth and the freckle-free solidification of superalloy castings. Moreover, by applying the targeted cooling and heating technique, a novel concept for the three-dimensional and precise control of SC growth, a proper thermal arrangement may be dynamically established for the microscopic control of SC growth in the critical areas of large industrial gas turbine blades.

Keywords

superalloy / investment casting / Bridgman process / directional solidification / single crystal / turbine blade

Cite this article

Download citation ▾
Dexin MA. Novel casting processes for single-crystal turbine blades of superalloys. Front. Mech. Eng., 2018, 13(1): 3-16 DOI:10.1007/s11465-018-0475-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Versnyder F L Shank M E. The development of columnar grain and single crystal high temperature materials through directional solidification. Materials Science and Engineering19706(4): 213–247

[2]

Pratt D C. Industrial casting of superalloys. Materials Science and Technology19862(5): 426–435

[3]

Quested P NOsgerby  S. Mechanical properties of conventionally cast, directionally solidified and single-crystal superalloys. Materials Science and Technology19862(5): 461–475

[4]

Gebhardt A. Rapid Prototyping. Munich: Carl Hanser Verlag, 2006

[5]

Feriera J CSantos  EMadureira H Integration of VP/RP/RT/RE/RM for rapid product and process development. Rapid Prototyping Journal200612(1): 18–28

[6]

Budzik GMarkowski  TSobolak M. Hybrid foundry patterns of bevel gears. Archives of Foundry Engineering20077(1): 131–134

[7]

Pattnaik SJha  P KKarunakar  D B. A review of rapid prototyping integrated investment casting processes. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications2014228(4): 249–277

[8]

Bridgman P W. US Patent, 1793672, 1931-02-24

[9]

Erickson J SOwczarski  W ACurran  P W. Process speeds up directional solidification. Metal Progress197199: 58–60

[10]

Pratt D C. Industrial casting of superalloys. Materials Science and Technology19862(5): 426–435

[11]

Elliott A JPollock  T MTin  S Directional solidification of large superalloy castings with radiation and liquid-metal cooling: A comparative assessment. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science200435(10): 3221–3231 

[12]

Tschinkel J G Giamei A F Kearn B H. US Patent, 3763926, 1973-10-09

[13]

Giamei A FTschinkel  J G. Liquid metal cooling: A new solidification technique. Metallurgical Transactions and Materials Transactions A: Physical Metallurgy and Materials Science19767(9): 1427–1434

[14]

Elliott A J. Directional solidification of large cross-section Ni-base superalloy castings via liquid-metal cooling. Dissertation for the Doctoral Degree. Ann Arbor: The University of Michigan, 2005

[15]

Liu LHuang  TQu M High thermal gradient directional solidification and its application in the processing of nickel-based superalloys. Journal of Materials Processing Technology2010210(1): 159–165 

[16]

Zhang JLuo  L. Directional solidification assisted by liquid metal cooling. Journal of Materials Science and Technology200723: 289–300

[17]

Lohmüller AEßer  WGroßmann J Improved quality and economics of investment castings by liquid metal cooling—The selection of cooling media. In: Proceedings of International Symposium on Superalloys2000, 181–188

[18]

Konter MKats  EHofmann N. A novel casting process for single crystal gas turbine components. In: Proceedings of International Symposium on Superalloys2000, 189–200

[19]

Wagner AShollock  B AMcLean  M. Grain structure development in directional solidification of nickel-base superalloys. Materials Science and Engineering A2004374(1–2): 270–279

[20]

Meyer ter Vehn M Dedecke D Paul U Undercooling related casting defects in SC turbine blades. In: Proceedings of International Symposium on Superalloys1996, 471–479

[21]

Zhou Y. Formation of stray grains during directional solidification of a nickel-based superalloy. Scripta Materialia201165(4): 281–284 

[22]

Tschinkel J G Giamei A F Kearn B H. US Patent, 3763926, 1973-10-09

[23]

Yang X LDong  H BWang  W,  et al. Microscale simulation of stray grain formation in investment cast turbine blades. Materials Science and Engineering: A2004386(1–2): 129–139

[24]

Xuan WRen  ZLiu H Formation of stray grains in directionally solidified Ni-based superalloys with cross-section change regions. Materials Science Forum2013747–748: 535–539

[25]

Xuan WRen  ZLi C Formation of stray grain in cross section area for Ni-based superalloy during directional solidification.  IOP Conference Series: Materials Science and Engineering201127: 012035 

[26]

Zhang JHuang  TLiu L Advances in solidification characteristics and typical casting defects in nickel-based single crystal superalloys. Acta Metallurgica Sinica201551(10): 1163–1178 (in Chinese)

[27]

Xuan WRen  ZLi C. Experimental evidence of the effect of a high magnetic field on the stray grains formation in cross-section change region for Ni-based superalloy during directional solidification. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science201546(4): 1461–1466

[28]

Ma DWu  QBührig-Polaczek A. Undercoolability of superalloys and solidification defects in single crystal components. Advanced Materials Research2011278: 417–422 

[29]

Ma DBührig-Polaczek  A. Application of heat-conductor technique to production of SC turbine blade. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science200940(5): 738–748

[30]

Ma D. Development of single crystal solidification technology for production of superalloy turbine blades. Acta Metallurgica Sinica201551(10): 1179–1190 (in Chinese)

[31]

Ma DBührig-Polaczek  A. Avoiding grain defects in single crystal components by application of a heat conductor technique. International Journal of Materials Research2009100(8): 1145–1151

[32]

Ma DBührig-Polaczek  A. Development of heat conductor technique for single crystal components of superalloys. International Journal of Cast Metals Research200922(6): 422–429 

[33]

Yu JXu  QCui K Numerical simulation of solidification process on single crystal Ni-based superalloy investment castings. Journal of Materials Science and Technology200723(1): 47–54

[34]

Napolitano R E Schaefer R J. The convergence-fault mechanism for low-angle boundary formation in single-crystal castings. Journal of Materials Science200035(7): 1641–1659

[35]

Ma DWu  QBührig-Polaczek A. Investigation on the asymmetry of thermal condition and grain defect formation in customary directional solidification process.  IOP Conference Series: Materials Science and Engineering201127: 012037

[36]

Ma DWu  QBührig-Polaczek A. Some new observations on freckle formation in directionally solidified superalloy components. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science201243(2): 344–353

[37]

Ma DBührig-Polaczek  A. The influence of surface roughness on freckle formation in directionally solidified superalloy samples. Metallurgical and Materials Transactions. B, Process Metallurgy and Materials Processing Science201243(4): 671–677

[38]

Ma DBührig-Polaczek  A. The geometry effect of freckle formation in the directionally solidified superalloy CMSX-4. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science201445(3): 1435–1444

[39]

Ma DWang  FWu Q Innovation of casting techniques for single crystal turbine blades of superalloys. In: Proceedings of International Symposium on Superalloys2016, 237–246

[40]

Ma DLu  HBührig-Polaczek A. Experimental trials of the thin shell casting (TSC) technology for directional solidification.  IOP Conference Series: Materials Science and Engineering201127: 012036

[41]

Wang FMa  DZhang J A high thermal gradient directional solidification method for growing superalloy single crystals. Journal of Materials Processing Technology2014214(12): 3112–3121

[42]

Wang FMa  DBogner S Comparative investigation of the downward and upward directionally solidified single-crystal blades of superalloy CMSX-4. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science201647(5): 2376–2386

[43]

Ma DGrafe  U. Dendrite growth and microsegregation during directional solidification: An analytical model and experimental studies on the superalloys CMSX-4. International Journal of Cast Metals Research200013(2): 85–92

[44]

Ma DGrafe  U. Microsegregation in directionally solidified dendritic-cellular structure of superalloy CMSX-4. Materials Science and Engineering A1999270(2): 339–342

[45]

Feng QCarroll  L JPollock  T M. Solidification segregation in Ruthenium-containing nickel-base superalloys. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science200637(6): 1949–1962

[46]

Caldwell E CFela  F JFuchs  G E. Segregation of elements in high refractory content single crystal nickel based superalloys. In: Proceedings of International Symposium on Superalloys2004. 811–818

[47]

Caldwell E CFela  F JFuchs  G E. The segregation of elements in high-refractory-content single-crystal nickel-based superalloys.  Journal of Minerals, Metals and Materials200456(9): 44–48 

[48]

Heckl ARettig  RSinger R F. Solidification characteristics and segregation behavior of nickel-base superalloys in dependence on different rhenium and ruthenium contents. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science201041(1): 202–211

[49]

Wang FMa  DZhang J Investigation of segregation and density profiles in the mushy zone of CMSX-4 superalloy solidified during downward and upward directional solidification processes. Journal of Alloys and Compounds2015620: 24–30

[50]

Wang FMa  DBogner S Comparative study of the segregation behavior and crystallographic orientation in a nickel-based single-crystal superalloy. Journal of Alloys and Compounds2015647: 528–532

RIGHTS & PERMISSIONS

The Author(s) 2018. This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (844KB)

13025

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/