Berberine alleviates myocardial diastolic dysfunction by modulating Drp1-mediated mitochondrial fission and Ca2+ homeostasis in a murine model of HFpEF

  • Miyesaier Abudureyimu 1 ,
  • Mingjie Yang 2,3,4,5 ,
  • Xiang Wang 1 ,
  • Xuanming Luo 6 ,
  • Junbo Ge , 2,3,4,5 ,
  • Hu Peng , 7 ,
  • Yingmei Zhang , 2,3,4,5 ,
  • Jun Ren , 2,3,4,5,8
Expand
  • 1. Cardiovascular Department, Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, China
  • 2. Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
  • 3. Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200032, China
  • 4. Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200032, China
  • 5. National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
  • 6. Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, China
  • 7. Department of Geriatrics, Shanghai Tenth Hospital, Tongji University, Shanghai 200072, China
  • 8. Department of Medical Laboratory and Pathology, University of Washington, Seattle, WA 98195, USA
ge.junbo@zs-hospital.sh.cn
penghu@tongji.edu.cn
zhang.yingmei@zs-hospital.sh.cn
ren.jun@zs-hospital.sh.cn

Received date: 27 Sep 2022

Accepted date: 05 Jan 2023

Published date: 15 Dec 2023

Copyright

2023 Higher Education Press

Abstract

Heart failure with preserved ejection fraction (HFpEF) displays normal or near-normal left ventricular ejection fraction, diastolic dysfunction, cardiac hypertrophy, and poor exercise capacity. Berberine, an isoquinoline alkaloid, possesses cardiovascular benefits. Adult male mice were assigned to chow or high-fat diet with L-NAME (“two-hit” model) for 15 weeks. Diastolic function was assessed using echocardiography and non-invasive Doppler technique. Myocardial morphology, mitochondrial ultrastructure, and cardiomyocyte mechanical properties were evaluated. Proteomics analysis, autophagic flux, and intracellular Ca2+ were also assessed in chow and HFpEF mice. The results show exercise intolerance and cardiac diastolic dysfunction in “two-hit”-induced HFpEF model, in which unfavorable geometric changes such as increased cell size, interstitial fibrosis, and mitochondrial swelling occurred in the myocardium. Diastolic dysfunction was indicated by the elevated E value, mitral E/A ratio, and E/e’ ratio, decreased e’ value and maximal velocity of re-lengthening (–dL/dt), and prolonged re-lengthening in HFpEF mice. The effects of these processes were alleviated by berberine. Moreover, berberine ameliorated autophagic flux, alleviated Drp1 mitochondrial localization, mitochondrial Ca2+ overload and fragmentation, and promoted intracellular Ca2+ reuptake into sarcoplasmic reticulum by regulating phospholamban and SERCA2a. Finally, berberine alleviated diastolic dysfunction in “two-hit” diet-induced HFpEF model possibly because of the promotion of autophagic flux, inhibition of mitochondrial fragmentation, and cytosolic Ca2+ overload.

Key words: HFpEF; berberine; Drp1; autophagy; Ca2+

Cite this article

Miyesaier Abudureyimu , Mingjie Yang , Xiang Wang , Xuanming Luo , Junbo Ge , Hu Peng , Yingmei Zhang , Jun Ren . Berberine alleviates myocardial diastolic dysfunction by modulating Drp1-mediated mitochondrial fission and Ca2+ homeostasis in a murine model of HFpEF[J]. Frontiers of Medicine, 2023 , 17(6) : 1219 -1235 . DOI: 10.1007/s11684-023-0983-0

Acknowledgements

This study was supported in part by the National Natural Science Foundation of China (Nos. 82272184 and 82130011) and Shanghai Xuhui District Scientific Research Project (Nos. 202104 and 202105). We would like to thank Drs. Yu Kong and Xu Wang (Electron Microscopy Facilities of Center for Excellence in Brain Science and Technology, Chinese Academy of Sciences, Shanghai, China) for assistance with EM sample preparation and EM image analysis.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-023-0983-0 and is accessible for authorized users.

Compliance with ethics guidelines

Miyesaier Abudureyimu, Mingjie Yang, Xiang Wang, Xuanming Luo, Junbo Ge, Hu Peng, Yingmei Zhang, and Jun Ren declare that they have no conflict of interest. This study was approved by the Ethics Committee of Cardiovascular Department, Xuhui Central Hospital, Fudan University, Shanghai, China. Written informed consent was obtained from all individuals at admission.
1
Tsutsui H. Recent advances in the pharmacological therapy of chronic heart failure: evidence and guidelines. Pharmacol Ther 2022; 238: 108185

DOI PMID

2
Ho JE, Redfield MM, Lewis GD, Paulus WJ, Lam CSP. Deliberating the diagnostic dilemma of heart failure with preserved ejection fraction. Circulation 2020; 142(18): 1770–1780

DOI PMID

3
Abudureyimu M, Luo X, Wang X, Sowers JR, Wang W, Ge J, Ren J, Zhang Y. Heart failure with preserved ejection fraction (HFpEF) in type 2 diabetes mellitus: from pathophysiology to therapeutics. J Mol Cell Biol 2022; 14(5): mjac028

DOI PMID

4
Zheng Y, Ma S, Huang Q, Fang Y, Tan H, Chen Y, Li C. Meta-analysis of the efficacy and safety of finerenone in diabetic kidney disease. Kidney Blood Press Res 2022; 47(4): 219–228

DOI PMID

5
Borlaug BA. Evaluation and management of heart failure with preserved ejection fraction. Nat Rev Cardiol 2020; 17(9): 559–573

DOI PMID

6
Zhang Y, Whaley-Connell AT, Sowers JR, Ren J. Autophagy as an emerging target in cardiorenal metabolic disease: from pathophysiology to management. Pharmacol Ther 2018; 191: 1–22

DOI PMID

7
Rosalia L, Ozturk C, Shoar S, Fan Y, Malone G, Cheema FH, Conway C, Byrne RA, Duffy GP, Malone A, Roche ET, Hameed A. Device-based solutions to improve cardiac physiology and hemodynamics in heart failure with preserved ejection fraction. JACC Basic Transl Sci 2021; 6(9–10): 772–795

DOI PMID

8
Shah SJ, Borlaug BA, Kitzman DW, McCulloch AD, Blaxall BC, Agarwal R, Chirinos JA, Collins S, Deo RC, Gladwin MT, Granzier H, Hummel SL, Kass DA, Redfield MM, Sam F, Wang TJ, Desvigne-Nickens P, Adhikari BB. Research priorities for heart failure with preserved ejection fraction: National Heart, Lung, and Blood Institute Working Group summary. Circulation 2020; 141(12): 1001–1026

DOI PMID

9
Cai Y, Xin Q, Lu J, Miao Y, Lin Q, Cong W, Chen K. A new therapeutic candidate for cardiovascular diseases: berberine. Front Pharmacol 2021; 12: 631100

DOI PMID

10
Ceylan-Isik AF, Fliethman RM, Wold LE, Ren J. Herbal and traditional Chinese medicine for the treatment of cardiovascular complications in diabetes mellitus. Curr Diabetes Rev 2008; 4(4): 320–328

DOI PMID

11
Ai X, Yu P, Peng L, Luo L, Liu J, Li S, Lai X, Luan F, Meng X. Berberine: a review of its pharmacokinetics properties and therapeutic potentials in diverse vascular diseases. Front Pharmacol 2021; 12: 762654

DOI PMID

12
Cao RY, Zhang Y, Feng Z, Liu S, Liu Y, Zheng H, Yang J. The effective role of natural product berberine in modulating oxidative stress and inflammation related atherosclerosis: novel insights into the gut-heart axis evidenced by genetic sequencing analysis. Front Pharmacol 2021; 12: 764994

DOI PMID

13
An N, Zhang G, Li Y, Yuan C, Yang F, Zhang L, Gao Y, Xing Y. Promising antioxidative effect of berberine in cardiovascular diseases. Front Pharmacol 2022; 13: 865353

DOI PMID

14
Abudureyimu M, Yu W, Cao RY, Zhang Y, Liu H, Zheng H. Berberine promotes cardiac function by upregulating PINK1/parkin-mediated mitophagy in heart failure. Front Physiol 2020; 11: 565751

DOI PMID

15
Kumar AA, Kelly DP, Chirinos JA. Mitochondrial dysfunction in heart failure with preserved ejection fraction. Circulation 2019; 139(11): 1435–1450

DOI PMID

16
Schiattarella GG, Altamirano F, Tong D, French KM, Villalobos E, Kim SY, Luo X, Jiang N, May HI, Wang ZV, Hill TM, Mammen PPA, Huang J, Lee DI, Hahn VS, Sharma K, Kass DA, Lavandero S, Gillette TG, Hill JA. Nitrosative stress drives heart failure with preserved ejection fraction. Nature 2019; 568(7752): 351–356

DOI PMID

17
Madikyzy M, Tilegen M, Nazarbek G, Mu C, Kutzhanova A, Li X, Ma C, Xie Y. Honghua extract mediated potent inhibition of COVID-19 host cell pathways. Sci Rep 2022; 12(1): 14296

DOI PMID

18
Galderisi M, Cosyns B, Edvardsen T, Cardim N, Delgado V, Di Salvo G, Donal E, Sade LE, Ernande L, Garbi M, Grapsa J, Hagendorff A, Kamp O, Magne J, Santoro C, Stefanidis A, Lancellotti P, Popescu B, Habib G; 2016–2018 EACVI Scientific Documents Committee. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2017; 18(12): 1301–1310

DOI PMID

19
Ren J, Sun M, Zhou H, Ajoolabady A, Zhou Y, Tao J, Sowers JR, Zhang Y. FUNDC1 interacts with FBXL2 to govern mitochondrial integrity and cardiac function through an IP3R3-dependent manner in obesity. Sci Adv 2020; 6(38): eabc8561

DOI PMID

20
Stefani GP, Capalonga L, da Silva LR, Heck TG, Frizzo MN, Sulzbacher LM, Sulzbacher MM, de Batista D, Vedovatto S, Bertoni APS, Wink MR, Dal Lago P. Effects of aerobic and resistance exercise training associated with carnosine precursor supplementation on maximal strength and V̇O2max in rats with heart failure. Life Sci 2021; 282: 119816

DOI PMID

21
Yu W, Qin X, Zhang Y, Qiu P, Wang L, Zha W, Ren J. Curcumin suppresses doxorubicin-induced cardiomyocyte pyroptosis via a PI3K/Akt/mTOR-dependent manner. Cardiovasc Diagn Ther 2020; 10(4): 752–769

DOI PMID

22
Xu H, Yu W, Sun S, Li C, Ren J, Zhang Y. TAX1BP1 protects against myocardial infarction-associated cardiac anomalies through inhibition of inflammasomes in a RNF34/MAVS/NLRP3-dependent manner. Sci Bull (Beijing) 2021; 66(16): 1669–1683

DOI PMID

23
Huang H, Li M, Wang Y, Wu X, Shen J, Xiao Z, Zhao Y, Du F, Chen Y, Wu Z, Ji H, Zhang C, Li J, Wen Q, Kaboli PJ, Cho CH, Wang S, Wang Y, He Y, Wu X. Excessive intake of longan arillus alters gut homeostasis and aggravates colitis in mice. Front Pharmacol 2021; 12: 640417

DOI PMID

24
Li J, Li H, Cai S, Bai S, Cai H, Zhang X. CD157 in bone marrow mesenchymal stem cells mediates mitochondrial production and transfer to improve neuronal apoptosis and functional recovery after spinal cord injury. Stem Cell Res Ther 2021; 12(1): 289

DOI PMID

25
Song Z, Song H, Liu D, Yan B, Wang D, Zhang Y, Zhao X, Tian X, Yan C, Han Y. Overexpression of MFN2 alleviates sorafenib-induced cardiomyocyte necroptosis via the MAM-CaMKIIδ pathway in vitro and in vivo. Theranostics 2022; 12(3): 1267–1285

DOI PMID

26
Xu H, Yu W, Sun S, Li C, Zhang Y, Ren J. Luteolin attenuates doxorubicin-induced cardiotoxicity through promoting mitochondrial autophagy. Front Physiol 2020; 11: 113

DOI PMID

27
Sun S, Yu W, Xu H, Li C, Zou R, Wu NN, Wang L, Ge J, Ren J, Zhang Y. TBC1D15-Drp1 interaction-mediated mitochondrial homeostasis confers cardioprotection against myocardial ischemia/reperfusion injury. Metabolism 2022; 134: 155239

DOI PMID

28
Yang L, Xie P, Wu J, Yu J, Li X, Ma H, Yu T, Wang H, Ye J, Wang J, Zheng H. Deferoxamine treatment combined with sevoflurane postconditioning attenuates myocardial ischemia-reperfusion injury by restoring HIF-1/BNIP3-mediated mitochondrial autophagy in GK rats. Front Pharmacol 2020; 11: 6

DOI PMID

29
Wang X, Jiang Y, Zhang Y, Sun Q, Ling G, Jiang J, Li W, Tian X, Jiang Q, Lu L, Wang Y. The roles of the mitophagy inducer Danqi pill in heart failure: a new therapeutic target to preserve energy metabolism. Phytomedicine 2022; 99: 154009

DOI PMID

30
Kowaltowski AJ, Menezes-Filho SL, Assali EA, Gonçalves IG, Cabral-Costa JV, Abreu P, Miller N, Nolasco P, Laurindo FRM, Bruni-Cardoso A, Shirihai OS. Mitochondrial morphology regulates organellar Ca2+ uptake and changes cellular Ca2+ homeostasis. FASEB J 2019; 33(12): 13176–13188

DOI PMID

31
Zhu N, Huang B, Zhu L, Wang Y. Potential mechanisms of triptolide against diabetic cardiomyopathy based on network pharmacology analysis and molecular docking. J Diabetes Res 2021; 2021: 9944589

DOI PMID

32
Wold LE, Relling DP, Duan J, Norby FL, Ren J. Abrogated leptin-induced cardiac contractile response in ventricular myocytes under spontaneous hypertension: role of Jak/STAT pathway. Hypertension 2002; 39(1): 69–74

DOI PMID

33
Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA, Paulus WJ. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation 2016; 134(1): 73–90

DOI PMID

34
Tong M, Zablocki D, Sadoshima J. The role of Drp1 in mitophagy and cell death in the heart. J Mol Cell Cardiol 2020; 142: 138–145

DOI PMID

35
Friedman JR, Nunnari J. Mitochondrial form and function. Nature 2014; 505(7483): 335–343

DOI PMID

36
Picca A, Mankowski RT, Burman JL, Donisi L, Kim JS, Marzetti E, Leeuwenburgh C. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat Rev Cardiol 2018; 15(9): 543–554

DOI PMID

37
Kamerkar SC, Kraus F, Sharpe AJ, Pucadyil TJ, Ryan MT. Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nat Commun 2018; 9(1): 5239

DOI PMID

38
Ikeda Y, Shirakabe A, Maejima Y, Zhai P, Sciarretta S, Toli J, Nomura M, Mihara K, Egashira K, Ohishi M, Abdellatif M, Sadoshima J. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ Res 2015; 116(2): 264–278

DOI PMID

39
Ajoolabady A, Chiong M, Lavandero S, Klionsky DJ, Ren J. Mitophagy in cardiovascular diseases: molecular mechanisms, pathogenesis, and treatment. Trends Mol Med 2022; 28(10): 836–849

DOI PMID

40
Xu S, Wang P, Zhang H, Gong G, Gutierrez Cortes N, Zhu W, Yoon Y, Tian R, Wang W. CaMKII induces permeability transition through Drp1 phosphorylation during chronic β-AR stimulation. Nat Commun 2016; 7(1): 13189

DOI PMID

41
Jhun BS, O-Uchi J, Adaniya SM, Mancini TJ, Cao JL, King ME, Landi AK, Ma H, Shin M, Yang D, Xu X, Yoon Y, Choudhary G, Clements RT, Mende U, Sheu SS. Protein kinase D activation induces mitochondrial fragmentation and dysfunction in cardiomyocytes. J Physiol 2018; 596(5): 827–855

DOI PMID

42
Kageyama Y, Hoshijima M, Seo K, Bedja D, Sysa-Shah P, Andrabi SA, Chen W, Höke A, Dawson VL, Dawson TM, Gabrielson K, Kass DA, Iijima M, Sesaki H. Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. EMBO J 2014; 33(23): 2798–2813

DOI PMID

43
Zhang H, Wang P, Bisetto S, Yoon Y, Chen Q, Sheu SS, Wang W. A novel fission-independent role of dynamin-related protein 1 in cardiac mitochondrial respiration. Cardiovasc Res 2017; 113(2): 160–170

DOI PMID

44
Wasiak S, Zunino R, McBride HM. Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol 2007; 177(3): 439–450

DOI PMID

45
Shou J, Huo Y. PINK1 phosphorylates Drp1S616 to improve mitochondrial fission and inhibit the progression of hypertension-induced HFpEF. Int J Mol Sci 2022; 23(19): 11934

DOI PMID

46
Chaanine AH, Joyce LD, Stulak JM, Maltais S, Joyce DL, Dearani JA, Klaus K, Nair KS, Hajjar RJ, Redfield MM. Mitochondrial morphology, dynamics, and function in human pressure overload or ischemic heart disease with preserved or reduced ejection fraction. Circ Heart Fail 2019; 12(2): e005131

DOI PMID

47
Favaro G, Romanello V, Varanita T, Andrea Desbats M, Morbidoni V, Tezze C, Albiero M, Canato M, Gherardi G, De Stefani D, Mammucari C, Blaauw B, Boncompagni S, Protasi F, Reggiani C, Scorrano L, Salviati L, Sandri M. DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. Nat Commun 2019; 10(1): 2576

DOI PMID

48
Zhao Q, Lu D, Wang J, Liu B, Cheng H, Mattson MP, Cheng A. Calcium dysregulation mediates mitochondrial and neurite outgrowth abnormalities in SOD2 deficient embryonic cerebral cortical neurons. Cell Death Differ 2019; 26(9): 1600–1614

DOI PMID

49
Morciano G, Rimessi A, Patergnani S, Vitto VAM, Danese A, Kahsay A, Palumbo L, Bonora M, Wieckowski MR, Giorgi C, Pinton P. Calcium dysregulation in heart diseases: targeting calcium channels to achieve a correct calcium homeostasis. Pharmacol Res 2022; 177: 106119

DOI PMID

50
Siri-Angkul N, Dadfar B, Jaleel R, Naushad J, Parambathazhath J, Doye AA, Xie LH, Gwathmey JK. Calcium and heart failure: how did we get here and where are we going? Int J Mol Sci 2021; 22(14): 7392 doi:10.3390/ijms22147392

PMID

51
Williams GS, Boyman L, Chikando AC, Khairallah RJ, Lederer WJ. Mitochondrial calcium uptake. Proc Natl Acad Sci USA 2013; 110(26): 10479–10486

DOI PMID

52
Garbincius JF, Elrod JW. Mitochondrial calcium exchange in physiology and disease. Physiol Rev 2022; 102(2): 893–992

DOI PMID

53
Miranda-Silva D, Wüst RCI, Conceição G, Gonçalves-Rodrigues P, Gonçalves N, Gonçalves A, Kuster DWD, Leite-Moreira AF, van der Velden J, de Sousa Beleza JM, Magalhães J, Stienen GJM, Falcão-Pires I. Disturbed cardiac mitochondrial and cytosolic calcium handling in a metabolic risk-related rat model of heart failure with preserved ejection fraction. Acta Physiol (Oxf) 2020; 228(3): e13378

DOI PMID

Outlines

/