Berberine alleviates myocardial diastolic dysfunction by modulating Drp1-mediated mitochondrial fission and Ca2+ homeostasis in a murine model of HFpEF
Miyesaier Abudureyimu, Mingjie Yang, Xiang Wang, Xuanming Luo, Junbo Ge, Hu Peng, Yingmei Zhang, Jun Ren
Berberine alleviates myocardial diastolic dysfunction by modulating Drp1-mediated mitochondrial fission and Ca2+ homeostasis in a murine model of HFpEF
Heart failure with preserved ejection fraction (HFpEF) displays normal or near-normal left ventricular ejection fraction, diastolic dysfunction, cardiac hypertrophy, and poor exercise capacity. Berberine, an isoquinoline alkaloid, possesses cardiovascular benefits. Adult male mice were assigned to chow or high-fat diet with L-NAME (“two-hit” model) for 15 weeks. Diastolic function was assessed using echocardiography and non-invasive Doppler technique. Myocardial morphology, mitochondrial ultrastructure, and cardiomyocyte mechanical properties were evaluated. Proteomics analysis, autophagic flux, and intracellular Ca2+ were also assessed in chow and HFpEF mice. The results show exercise intolerance and cardiac diastolic dysfunction in “two-hit”-induced HFpEF model, in which unfavorable geometric changes such as increased cell size, interstitial fibrosis, and mitochondrial swelling occurred in the myocardium. Diastolic dysfunction was indicated by the elevated E value, mitral E/A ratio, and E/e’ ratio, decreased e’ value and maximal velocity of re-lengthening (–dL/dt), and prolonged re-lengthening in HFpEF mice. The effects of these processes were alleviated by berberine. Moreover, berberine ameliorated autophagic flux, alleviated Drp1 mitochondrial localization, mitochondrial Ca2+ overload and fragmentation, and promoted intracellular Ca2+ reuptake into sarcoplasmic reticulum by regulating phospholamban and SERCA2a. Finally, berberine alleviated diastolic dysfunction in “two-hit” diet-induced HFpEF model possibly because of the promotion of autophagic flux, inhibition of mitochondrial fragmentation, and cytosolic Ca2+ overload.
HFpEF / berberine / Drp1 / autophagy / Ca2+
[1] |
Tsutsui H. Recent advances in the pharmacological therapy of chronic heart failure: evidence and guidelines. Pharmacol Ther 2022; 238: 108185
CrossRef
Pubmed
Google scholar
|
[2] |
Ho JE, Redfield MM, Lewis GD, Paulus WJ, Lam CSP. Deliberating the diagnostic dilemma of heart failure with preserved ejection fraction. Circulation 2020; 142(18): 1770–1780
CrossRef
Pubmed
Google scholar
|
[3] |
Abudureyimu M, Luo X, Wang X, Sowers JR, Wang W, Ge J, Ren J, Zhang Y. Heart failure with preserved ejection fraction (HFpEF) in type 2 diabetes mellitus: from pathophysiology to therapeutics. J Mol Cell Biol 2022; 14(5): mjac028
CrossRef
Pubmed
Google scholar
|
[4] |
Zheng Y, Ma S, Huang Q, Fang Y, Tan H, Chen Y, Li C. Meta-analysis of the efficacy and safety of finerenone in diabetic kidney disease. Kidney Blood Press Res 2022; 47(4): 219–228
CrossRef
Pubmed
Google scholar
|
[5] |
Borlaug BA. Evaluation and management of heart failure with preserved ejection fraction. Nat Rev Cardiol 2020; 17(9): 559–573
CrossRef
Pubmed
Google scholar
|
[6] |
Zhang Y, Whaley-Connell AT, Sowers JR, Ren J. Autophagy as an emerging target in cardiorenal metabolic disease: from pathophysiology to management. Pharmacol Ther 2018; 191: 1–22
CrossRef
Pubmed
Google scholar
|
[7] |
Rosalia L, Ozturk C, Shoar S, Fan Y, Malone G, Cheema FH, Conway C, Byrne RA, Duffy GP, Malone A, Roche ET, Hameed A. Device-based solutions to improve cardiac physiology and hemodynamics in heart failure with preserved ejection fraction. JACC Basic Transl Sci 2021; 6(9–10): 772–795
CrossRef
Pubmed
Google scholar
|
[8] |
Shah SJ, Borlaug BA, Kitzman DW, McCulloch AD, Blaxall BC, Agarwal R, Chirinos JA, Collins S, Deo RC, Gladwin MT, Granzier H, Hummel SL, Kass DA, Redfield MM, Sam F, Wang TJ, Desvigne-Nickens P, Adhikari BB. Research priorities for heart failure with preserved ejection fraction: National Heart, Lung, and Blood Institute Working Group summary. Circulation 2020; 141(12): 1001–1026
CrossRef
Pubmed
Google scholar
|
[9] |
Cai Y, Xin Q, Lu J, Miao Y, Lin Q, Cong W, Chen K. A new therapeutic candidate for cardiovascular diseases: berberine. Front Pharmacol 2021; 12: 631100
CrossRef
Pubmed
Google scholar
|
[10] |
Ceylan-Isik AF, Fliethman RM, Wold LE, Ren J. Herbal and traditional Chinese medicine for the treatment of cardiovascular complications in diabetes mellitus. Curr Diabetes Rev 2008; 4(4): 320–328
CrossRef
Pubmed
Google scholar
|
[11] |
Ai X, Yu P, Peng L, Luo L, Liu J, Li S, Lai X, Luan F, Meng X. Berberine: a review of its pharmacokinetics properties and therapeutic potentials in diverse vascular diseases. Front Pharmacol 2021; 12: 762654
CrossRef
Pubmed
Google scholar
|
[12] |
Cao RY, Zhang Y, Feng Z, Liu S, Liu Y, Zheng H, Yang J. The effective role of natural product berberine in modulating oxidative stress and inflammation related atherosclerosis: novel insights into the gut-heart axis evidenced by genetic sequencing analysis. Front Pharmacol 2021; 12: 764994
CrossRef
Pubmed
Google scholar
|
[13] |
An N, Zhang G, Li Y, Yuan C, Yang F, Zhang L, Gao Y, Xing Y. Promising antioxidative effect of berberine in cardiovascular diseases. Front Pharmacol 2022; 13: 865353
CrossRef
Pubmed
Google scholar
|
[14] |
Abudureyimu M, Yu W, Cao RY, Zhang Y, Liu H, Zheng H. Berberine promotes cardiac function by upregulating PINK1/parkin-mediated mitophagy in heart failure. Front Physiol 2020; 11: 565751
CrossRef
Pubmed
Google scholar
|
[15] |
Kumar AA, Kelly DP, Chirinos JA. Mitochondrial dysfunction in heart failure with preserved ejection fraction. Circulation 2019; 139(11): 1435–1450
CrossRef
Pubmed
Google scholar
|
[16] |
Schiattarella GG, Altamirano F, Tong D, French KM, Villalobos E, Kim SY, Luo X, Jiang N, May HI, Wang ZV, Hill TM, Mammen PPA, Huang J, Lee DI, Hahn VS, Sharma K, Kass DA, Lavandero S, Gillette TG, Hill JA. Nitrosative stress drives heart failure with preserved ejection fraction. Nature 2019; 568(7752): 351–356
CrossRef
Pubmed
Google scholar
|
[17] |
Madikyzy M, Tilegen M, Nazarbek G, Mu C, Kutzhanova A, Li X, Ma C, Xie Y. Honghua extract mediated potent inhibition of COVID-19 host cell pathways. Sci Rep 2022; 12(1): 14296
CrossRef
Pubmed
Google scholar
|
[18] |
Galderisi M, Cosyns B, Edvardsen T, Cardim N, Delgado V, Di Salvo G, Donal E, Sade LE, Ernande L, Garbi M, Grapsa J, Hagendorff A, Kamp O, Magne J, Santoro C, Stefanidis A, Lancellotti P, Popescu B, Habib G; 2016–2018 EACVI Scientific Documents Committee. Standardization of adult transthoracic echocardiography reporting in agreement with recent chamber quantification, diastolic function, and heart valve disease recommendations: an expert consensus document of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2017; 18(12): 1301–1310
CrossRef
Pubmed
Google scholar
|
[19] |
Ren J, Sun M, Zhou H, Ajoolabady A, Zhou Y, Tao J, Sowers JR, Zhang Y. FUNDC1 interacts with FBXL2 to govern mitochondrial integrity and cardiac function through an IP3R3-dependent manner in obesity. Sci Adv 2020; 6(38): eabc8561
CrossRef
Pubmed
Google scholar
|
[20] |
Stefani GP, Capalonga L, da Silva LR, Heck TG, Frizzo MN, Sulzbacher LM, Sulzbacher MM, de Batista D, Vedovatto S, Bertoni APS, Wink MR, Dal Lago P. Effects of aerobic and resistance exercise training associated with carnosine precursor supplementation on maximal strength and V̇O2max in rats with heart failure. Life Sci 2021; 282: 119816
CrossRef
Pubmed
Google scholar
|
[21] |
Yu W, Qin X, Zhang Y, Qiu P, Wang L, Zha W, Ren J. Curcumin suppresses doxorubicin-induced cardiomyocyte pyroptosis via a PI3K/Akt/mTOR-dependent manner. Cardiovasc Diagn Ther 2020; 10(4): 752–769
CrossRef
Pubmed
Google scholar
|
[22] |
Xu H, Yu W, Sun S, Li C, Ren J, Zhang Y. TAX1BP1 protects against myocardial infarction-associated cardiac anomalies through inhibition of inflammasomes in a RNF34/MAVS/NLRP3-dependent manner. Sci Bull (Beijing) 2021; 66(16): 1669–1683
CrossRef
Pubmed
Google scholar
|
[23] |
Huang H, Li M, Wang Y, Wu X, Shen J, Xiao Z, Zhao Y, Du F, Chen Y, Wu Z, Ji H, Zhang C, Li J, Wen Q, Kaboli PJ, Cho CH, Wang S, Wang Y, He Y, Wu X. Excessive intake of longan arillus alters gut homeostasis and aggravates colitis in mice. Front Pharmacol 2021; 12: 640417
CrossRef
Pubmed
Google scholar
|
[24] |
Li J, Li H, Cai S, Bai S, Cai H, Zhang X. CD157 in bone marrow mesenchymal stem cells mediates mitochondrial production and transfer to improve neuronal apoptosis and functional recovery after spinal cord injury. Stem Cell Res Ther 2021; 12(1): 289
CrossRef
Pubmed
Google scholar
|
[25] |
Song Z, Song H, Liu D, Yan B, Wang D, Zhang Y, Zhao X, Tian X, Yan C, Han Y. Overexpression of MFN2 alleviates sorafenib-induced cardiomyocyte necroptosis via the MAM-CaMKIIδ pathway in vitro and in vivo. Theranostics 2022; 12(3): 1267–1285
CrossRef
Pubmed
Google scholar
|
[26] |
Xu H, Yu W, Sun S, Li C, Zhang Y, Ren J. Luteolin attenuates doxorubicin-induced cardiotoxicity through promoting mitochondrial autophagy. Front Physiol 2020; 11: 113
CrossRef
Pubmed
Google scholar
|
[27] |
Sun S, Yu W, Xu H, Li C, Zou R, Wu NN, Wang L, Ge J, Ren J, Zhang Y. TBC1D15-Drp1 interaction-mediated mitochondrial homeostasis confers cardioprotection against myocardial ischemia/reperfusion injury. Metabolism 2022; 134: 155239
CrossRef
Pubmed
Google scholar
|
[28] |
Yang L, Xie P, Wu J, Yu J, Li X, Ma H, Yu T, Wang H, Ye J, Wang J, Zheng H. Deferoxamine treatment combined with sevoflurane postconditioning attenuates myocardial ischemia-reperfusion injury by restoring HIF-1/BNIP3-mediated mitochondrial autophagy in GK rats. Front Pharmacol 2020; 11: 6
CrossRef
Pubmed
Google scholar
|
[29] |
Wang X, Jiang Y, Zhang Y, Sun Q, Ling G, Jiang J, Li W, Tian X, Jiang Q, Lu L, Wang Y. The roles of the mitophagy inducer Danqi pill in heart failure: a new therapeutic target to preserve energy metabolism. Phytomedicine 2022; 99: 154009
CrossRef
Pubmed
Google scholar
|
[30] |
Kowaltowski AJ, Menezes-Filho SL, Assali EA, Gonçalves IG, Cabral-Costa JV, Abreu P, Miller N, Nolasco P, Laurindo FRM, Bruni-Cardoso A, Shirihai OS. Mitochondrial morphology regulates organellar Ca2+ uptake and changes cellular Ca2+ homeostasis. FASEB J 2019; 33(12): 13176–13188
CrossRef
Pubmed
Google scholar
|
[31] |
Zhu N, Huang B, Zhu L, Wang Y. Potential mechanisms of triptolide against diabetic cardiomyopathy based on network pharmacology analysis and molecular docking. J Diabetes Res 2021; 2021: 9944589
CrossRef
Pubmed
Google scholar
|
[32] |
Wold LE, Relling DP, Duan J, Norby FL, Ren J. Abrogated leptin-induced cardiac contractile response in ventricular myocytes under spontaneous hypertension: role of Jak/STAT pathway. Hypertension 2002; 39(1): 69–74
CrossRef
Pubmed
Google scholar
|
[33] |
Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA, Paulus WJ. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation 2016; 134(1): 73–90
CrossRef
Pubmed
Google scholar
|
[34] |
Tong M, Zablocki D, Sadoshima J. The role of Drp1 in mitophagy and cell death in the heart. J Mol Cell Cardiol 2020; 142: 138–145
CrossRef
Pubmed
Google scholar
|
[35] |
Friedman JR, Nunnari J. Mitochondrial form and function. Nature 2014; 505(7483): 335–343
CrossRef
Pubmed
Google scholar
|
[36] |
Picca A, Mankowski RT, Burman JL, Donisi L, Kim JS, Marzetti E, Leeuwenburgh C. Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat Rev Cardiol 2018; 15(9): 543–554
CrossRef
Pubmed
Google scholar
|
[37] |
Kamerkar SC, Kraus F, Sharpe AJ, Pucadyil TJ, Ryan MT. Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nat Commun 2018; 9(1): 5239
CrossRef
Pubmed
Google scholar
|
[38] |
Ikeda Y, Shirakabe A, Maejima Y, Zhai P, Sciarretta S, Toli J, Nomura M, Mihara K, Egashira K, Ohishi M, Abdellatif M, Sadoshima J. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ Res 2015; 116(2): 264–278
CrossRef
Pubmed
Google scholar
|
[39] |
Ajoolabady A, Chiong M, Lavandero S, Klionsky DJ, Ren J. Mitophagy in cardiovascular diseases: molecular mechanisms, pathogenesis, and treatment. Trends Mol Med 2022; 28(10): 836–849
CrossRef
Pubmed
Google scholar
|
[40] |
Xu S, Wang P, Zhang H, Gong G, Gutierrez Cortes N, Zhu W, Yoon Y, Tian R, Wang W. CaMKII induces permeability transition through Drp1 phosphorylation during chronic β-AR stimulation. Nat Commun 2016; 7(1): 13189
CrossRef
Pubmed
Google scholar
|
[41] |
Jhun BS, O-Uchi J, Adaniya SM, Mancini TJ, Cao JL, King ME, Landi AK, Ma H, Shin M, Yang D, Xu X, Yoon Y, Choudhary G, Clements RT, Mende U, Sheu SS. Protein kinase D activation induces mitochondrial fragmentation and dysfunction in cardiomyocytes. J Physiol 2018; 596(5): 827–855
CrossRef
Pubmed
Google scholar
|
[42] |
Kageyama Y, Hoshijima M, Seo K, Bedja D, Sysa-Shah P, Andrabi SA, Chen W, Höke A, Dawson VL, Dawson TM, Gabrielson K, Kass DA, Iijima M, Sesaki H. Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. EMBO J 2014; 33(23): 2798–2813
CrossRef
Pubmed
Google scholar
|
[43] |
Zhang H, Wang P, Bisetto S, Yoon Y, Chen Q, Sheu SS, Wang W. A novel fission-independent role of dynamin-related protein 1 in cardiac mitochondrial respiration. Cardiovasc Res 2017; 113(2): 160–170
CrossRef
Pubmed
Google scholar
|
[44] |
Wasiak S, Zunino R, McBride HM. Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J Cell Biol 2007; 177(3): 439–450
CrossRef
Pubmed
Google scholar
|
[45] |
Shou J, Huo Y. PINK1 phosphorylates Drp1S616 to improve mitochondrial fission and inhibit the progression of hypertension-induced HFpEF. Int J Mol Sci 2022; 23(19): 11934
CrossRef
Pubmed
Google scholar
|
[46] |
Chaanine AH, Joyce LD, Stulak JM, Maltais S, Joyce DL, Dearani JA, Klaus K, Nair KS, Hajjar RJ, Redfield MM. Mitochondrial morphology, dynamics, and function in human pressure overload or ischemic heart disease with preserved or reduced ejection fraction. Circ Heart Fail 2019; 12(2): e005131
CrossRef
Pubmed
Google scholar
|
[47] |
Favaro G, Romanello V, Varanita T, Andrea Desbats M, Morbidoni V, Tezze C, Albiero M, Canato M, Gherardi G, De Stefani D, Mammucari C, Blaauw B, Boncompagni S, Protasi F, Reggiani C, Scorrano L, Salviati L, Sandri M. DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. Nat Commun 2019; 10(1): 2576
CrossRef
Pubmed
Google scholar
|
[48] |
Zhao Q, Lu D, Wang J, Liu B, Cheng H, Mattson MP, Cheng A. Calcium dysregulation mediates mitochondrial and neurite outgrowth abnormalities in SOD2 deficient embryonic cerebral cortical neurons. Cell Death Differ 2019; 26(9): 1600–1614
CrossRef
Pubmed
Google scholar
|
[49] |
Morciano G, Rimessi A, Patergnani S, Vitto VAM, Danese A, Kahsay A, Palumbo L, Bonora M, Wieckowski MR, Giorgi C, Pinton P. Calcium dysregulation in heart diseases: targeting calcium channels to achieve a correct calcium homeostasis. Pharmacol Res 2022; 177: 106119
CrossRef
Pubmed
Google scholar
|
[50] |
Siri-Angkul N, Dadfar B, Jaleel R, Naushad J, Parambathazhath J, Doye AA, Xie LH, Gwathmey JK. Calcium and heart failure: how did we get here and where are we going? Int J Mol Sci 2021; 22(14): 7392 doi:10.3390/ijms22147392
Pubmed
|
[51] |
Williams GS, Boyman L, Chikando AC, Khairallah RJ, Lederer WJ. Mitochondrial calcium uptake. Proc Natl Acad Sci USA 2013; 110(26): 10479–10486
CrossRef
Pubmed
Google scholar
|
[52] |
Garbincius JF, Elrod JW. Mitochondrial calcium exchange in physiology and disease. Physiol Rev 2022; 102(2): 893–992
CrossRef
Pubmed
Google scholar
|
[53] |
Miranda-Silva D, Wüst RCI, Conceição G, Gonçalves-Rodrigues P, Gonçalves N, Gonçalves A, Kuster DWD, Leite-Moreira AF, van der Velden J, de Sousa Beleza JM, Magalhães J, Stienen GJM, Falcão-Pires I. Disturbed cardiac mitochondrial and cytosolic calcium handling in a metabolic risk-related rat model of heart failure with preserved ejection fraction. Acta Physiol (Oxf) 2020; 228(3): e13378
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |