Mechanism of arterial remodeling in chronic allograft vasculopathy
Received date: 11 Apr 2011
Accepted date: 07 Jul 2011
Published date: 05 Sep 2011
Copyright
Chronic allograft vasculopathy (CAV) remains a major obstacle for long-term survival of grafts even though therapeutic strategies have improved considerably in recent years. CAV is characterized by concentric and diffuse neointimal formation, medial apoptosis, infiltration of lymphocyte or inflammatory cells, and deposition of extracellular matrix both in arteries and veins. Recent studies have shown that stem cells derived from the recipient contribute to neointimal formation under the regulation of chemokines and cytokines. Arterial remodeling in allografts eventually causes ischemic graft failure. The pathogenesis is multi-factorial with both immunologic and non-immunological factors being involved. The immunological factors have been discussed extensively in other articles. This review focuses mainly on the arterial remodeling that occurs in 3 layers of vessel walls including intimal injury, accumulation of smooth muscle-like cells in the neointimal, medial smooth muscle cell apoptosis, adventitial fibrosis, and deposition of extracellular matrix.
Qichang Zheng , Shanglong Liu , Zifang Song . Mechanism of arterial remodeling in chronic allograft vasculopathy[J]. Frontiers of Medicine, 2011 , 5(3) : 248 -253 . DOI: 10.1007/s11684-011-0149-3
1 |
Sayegh MH, Carpenter CB. Transplantation 50 years later—progress, challenges, and promises. N Engl J Med 2004; 351(26): 2761–2766
|
2 |
Belperio JA, Weigt SS, Fishbein MC, Lynch JP 3rd. Chronic lung allograft rejection: mechanisms and therapy. Proc Am Thorac Soc 2009; 6(1): 108–121
|
3 |
Hathout E, Beeson WL, Kuhn M, Johnston J, Fitts J, Razzouk A, Bailey L, Chinnock RE. Cardiac allograft vasculopathy in pediatric heart transplant recipients. Transpl Int 2006; 19(3): 184–189
|
4 |
Religa P, Bojakowski K, Gaciong Z, Thyberg J, Hedin U. Arteriosclerosis in rat aortic allografts: dynamics of cell growth, apoptosis and expression of extracellular matrix proteins. Mol Cell Biochem 2003; 249(1-2): 75–83
|
5 |
Yuan X, Paez-Cortez J, Schmitt-Knosalla I, D’Addio F, Mfarrej B, Donnarumma M, Habicht A, Clarkson MR, Iacomini J, Glimcher LH, Sayegh MH, Ansari MJ. A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy. J Exp Med 2008; 205(13): 3133–3144
|
6 |
Joosten SA, van Kooten C, Paul LC. Pathogenesis of chronic allograft rejection. Transpl Int 2003; 16(3): 137–145
|
7 |
Hamano K, Bashuda H, Ito H, Shirasawa B, Okumura K, Esato K. Graft vasculopathy and tolerance: does the balance of Th cells contribute to graft vasculopathy? J Surg Res 2000; 93(1): 28–34
|
8 |
Rose ML. Interferon-γ and intimal hyperplasia. Circ Res 2007; 101(6): 542–544
|
9 |
Vessie EL, Hirsch GM, Lee TD. Aortic allograft vasculopathy is mediated by CD8(+) T cells in Cyclosporin A immunosuppressed mice. Transpl Immunol 2005; 15(1): 35–44
|
10 |
Wang CY, Aronson I, Takuma S, Homma S, Naka Y, Alshafie T, Brovkovych V, Malinski T, Oz MC, Pinsky DJ. cAMP pulse during preservation inhibits the late development of cardiac isograft and allograft vasculopathy. Circ Res 2000; 86(9): 982–988
|
11 |
Lawson C, Wolf S. ICAM-1 signaling in endothelial cells. Pharmacol Rep 2009; 61(1): 22–32
|
12 |
Rahmani M, Cruz RP, Granville DJ, McManus BM. Allograft vasculopathy versus atherosclerosis. Circ Res 2006; 99(8): 801–815
|
13 |
Mehra MR. Contemporary concepts in prevention and treatment of cardiac allograft vasculopathy. Am J Transplant 2006; 6(6): 1248–1256
|
14 |
Waller J, Brook NR, Nicholson ML. Cardiac allograft vasculopathy: current concepts and treatment. Transpl Int 2003; 16(6): 367–375
|
15 |
Ramzy D, Rao V, Brahm J, Miriuka S, Delgado D, Ross HJ. Cardiac allograft vasculopathy: a review. Can J Surg 2005; 48(4): 319–327
|
16 |
Hu Y, Davison F, Zhang Z, Xu Q. Endothelial replacement and angiogenesis in arteriosclerotic lesions of allografts are contributed by circulating progenitor cells. Circulation 2003; 108(25): 3122–3127
|
17 |
Der H, Kerekes G, Veres K, Szodoray P, Toth J, Lakos G, Szegedi G, Soltesz P. Impaired endothelial function and increased carotid intima-media thickness in association with elevated von Willebrand antigen level in primary antiphospholipid syndrome. Lupus 2007; 16(7): 497–503
|
18 |
Raichlin E, Kushwaha SS, Lennon RJ, Frantz RP, Edwards BS, Prasad A, Rihal CS, Lerman A. Features of cardiac allograft coronary endothelial dysfunction. Am J Cardiol 2009; 103(8): 1154–1158
|
19 |
Kofler S, Petrakopoulou P, Nickel T, Weis M. Cardiac allograft endothelial dysfunction. Eur J Clin Pharmacol 2006; 62(Suppl 1): 79–82
|
20 |
Khazaei M, Moien-Afshari F, Laher I. Vascular endothelial function in health and diseases. Pathophysiology 2008; 15(1): 49–67
|
21 |
Russell ME. Macrophages in chronic rejection and graft vasculopathy: a diverse and dynamic cell with myriad roles. Transplant Rev 1999; 13(3): 157–168
|
22 |
Woywodt A, Schroeder M, Gwinner W, Mengel M, Jaeger M, Schwarz A, Haller H, Haubitz M. Elevated numbers of circulating endothelial cells in renal transplant recipients. Transplantation 2003; 76(1): 1–4
|
23 |
Lagaaij EL, Cramer-Knijnenburg GF, van Kemenade FJ, van Es LA, Bruijn JA, van Krieken JH. Endothelial cell chimerism after renal transplantation and vascular rejection. Lancet 2001; 357(9249): 33–37
|
24 |
Timmermans F, Plum J, Yöder MC, Ingram DA, Vandekerckhove B, Case J. Endothelial progenitor cells: identity defined? J Cell Mol Med 2009; 13(1): 87–102
|
25 |
Metharom P, Caplice NM. Vascular disease: a new progenitor biology. Curr Vasc Pharmacol 2007; 5(1): 61–68
|
26 |
Liu CS, Wang SH, Metharom P, Caplice NM. Myeloid lineage of human endothelial outgrowth cells circulating in blood and vasculogenic endothelial-like cells in the diseased vessel wall. J Vasc Res 2009; 46(6): 581–591
|
27 |
Zhang F, Tsai S, Kato K, Yamanouchi D, Wang C, Rafii S, Liu B, Kent KC. Transforming growth factor-β promotes recruitment of bone marrow cells and bone marrow-derived mesenchymal stem cells through stimulation of MCP-1 production in vascular smooth muscle cells. J Biol Chem 2009; 284(26): 17564–17574
|
28 |
Reinders ME, Rabelink TJ, Briscoe DM. Angiogenesis and endothelial cell repair in renal disease and allograft rejection. J Am Soc Nephrol 2006; 17(4): 932–942
|
29 |
Ii M, Losordo DW. Transplant graft vasculopathy: a dark side of bone marrow stem cells? Circulation 2003; 108(25): 3056–3058
|
30 |
Cailhier JF, Laplante P, Hébert MJ. Endothelial apoptosis and chronic transplant vasculopathy: recent results, novel mechanisms. Am J Transplant 2006; 6(2): 247–253
|
31 |
Kang DH, Kang SW, Jeong HJ, Kim YS, Yang CW, Johnson RJ. Transplant graft vasculopathy: an emerging target for prevention and treatment of renal allograft dysfunction. Yonsei Med J 2004; 45(6): 1053–1058
|
32 |
Mitchell RN. Allograft arteriopathy: pathogenesis update. Cardiovasc Pathol 2004; 13(1): 33–40
|
33 |
Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, Hirai H, Makuuchi M, Hirata Y, Nagai R. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 2002; 8(4): 403–409
|
34 |
Mitchell RN, Libby P. Vascular remodeling in transplant vasculopathy. Circ Res 2007; 100(7): 967–978
|
35 |
Zhang LN, Wilson DW, da Cunha V, Sullivan ME, Vergona R, Rutledge JC, Wang YX. Endothelial NO synthase deficiency promotes smooth muscle progenitor cells in association with upregulation of stromal cell-derived factor-1alpha in a mouse model of carotid artery ligation. Arterioscler Thromb Vasc Biol 2006; 26(4): 765–772
|
36 |
Libby P, Pober JS. Chronic rejection. Immunity 2001; 14(4): 387–397
|
37 |
Ma X, Hibbert B, White D. Contribution of recipient-derived cells in allograft neointima formation and the response to stent implantation. PloS ONE 2008; 3: e1894
|
38 |
Song ZF, Li W, Zheng QC, Shang D, Shu XG, Guan SM. The origin of neointimal smooth muscle cells in transplant arteriosclerosis from recipient bone-marrow cells in rat aortic allograft. J Huazhong Univ Sci Technolog Med Sci 2007; 27(3): 303–306
|
39 |
George J, Afek A, Abashidze A, Shmilovich H, Deutsch V, Kopolovich J, Miller H, Keren G. Transfer of endothelial progenitor and bone marrow cells influences atherosclerotic plaque size and composition in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 2005; 25(12): 2636–2641
|
40 |
Religa P, Grudzinska MK, Bojakowski K, Soin J, Nozynski J, Zakliczynski M, Gaciong Z, Zembala M, Söderberg-Nauclér C. Host-derived smooth muscle cells accumulate in cardiac allografts: role of inflammation and monocyte chemoattractant protein 1. PLoS ONE 2009; 4(1): e4187
|
41 |
Schober A. Chemokines in vascular dysfunction and remodeling. Arterioscler Thromb Vasc Biol 2008; 28(11): 1950–1959
|
42 |
Sipkins DA, Wei X, Wu JW, Runnels JM, Côté D, Means TK, Luster AD, Scadden DT, Lin CP. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 2005; 435(7044): 969–973
|
43 |
Sackstein R, Merzaban JS, Cain DW, Dagia NM, Spencer JA, Lin CP, Wohlgemuth R. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med 2008; 14(2): 181–187
|
44 |
Henschler R, Deak E, Seifried E. Homing of mesenchymal stem cells. Transfus Med Hemother 2008; 35(4): 306–312
|
45 |
Currie M, Zaki AM, Nejat S, Hirsch GM, Lee TD. Immunologic targets in the etiology of allograft vasculopathy: endothelium versus media. Transpl Immunol 2008; 19(2): 120–126
|
46 |
Han CI, Campbell GR, Campbell JH. Circulating bone marrow cells can contribute to neointimal formation. J Vasc Res 2001; 38(2): 113–119
|
47 |
Hart-Matyas M, Nejat S, Jordan JL, Hirsch GM, Lee TD. IFN-γ and Fas/FasL pathways cooperate to induce medial cell loss and neointimal lesion formation in allograft vasculopathy. Transpl Immunol 2010; 22(3-4): 157–164
|
48 |
Karshovska E, Schober A. Mechanisms of arterial remodeling and neointima formation: an updated view on the chemokine system. Drug Discov Today Dis Mech 2008; 5(3-4): 293–298
|
49 |
van Oostrom O, Fledderus JO, de Kleijn DP, Pasterkamp G, Verhaar MC. Smooth muscle progenitor cells: friend or foe in vascular disease? Curr Stem Cell Res Ther 2009; 4(2): 131–140
|
50 |
Eisen H, Kobashigawa J, Starling RC, Valantine H, Mancini D. Improving outcomes in heart transplantation: the potential of proliferation signal inhibitors. Transplant Proc 2005; 37(Suppl 4): 4–17
|
51 |
Xu Q. Stem cells and transplant arteriosclerosis. Circ Res 2008; 102(9): 1011–1024
|
52 |
Jevon M, Dorling A, Hornick PI. Progenitor cells and vascular disease. Cell Prolif 2008; 41(Suppl 1): 146–164
|
53 |
Sartore S, Chiavegato A, Faggin E, Franch R, Puato M, Ausoni S, Pauletto P. Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant. Circ Res 2001; 89(12): 1111–1121
|
54 |
Gössl M, Lerman A. Endothelin: beyond a vasoconstrictor. Circulation 2006; 113(9): 1156–1158
|
55 |
Gutterman DD. Adventitia-dependent influences on vascular function. Am J Physiol 1999; 277(4 Pt 2): H1265–H1272
|
56 |
Sun H, Lu X, Wu S, Sun W. The effects of C-reactive protein, interleukin-6, and tumor necrosis factor-α in rat allograft adventitial inflammation and allograft arteriosclerosis. Transplant Proc 2009; 41(9): 3909–3912
|
57 |
Shimizu K, Mitchell RN. The role of chemokines in transplant graft arterial disease. Arterioscler Thromb Vasc Biol 2008; 28(11): 1937–1949
|
58 |
Khan R, Agrotis A, Bobik A. Understanding the role of transforming growth factor-beta1 in intimal thickening after vascular injury. Cardiovasc Res 2007; 74(2): 223–234
|
/
〈 | 〉 |