Mechanism of arterial remodeling in chronic allograft vasculopathy
Qichang Zheng, Shanglong Liu, Zifang Song
Mechanism of arterial remodeling in chronic allograft vasculopathy
Chronic allograft vasculopathy (CAV) remains a major obstacle for long-term survival of grafts even though therapeutic strategies have improved considerably in recent years. CAV is characterized by concentric and diffuse neointimal formation, medial apoptosis, infiltration of lymphocyte or inflammatory cells, and deposition of extracellular matrix both in arteries and veins. Recent studies have shown that stem cells derived from the recipient contribute to neointimal formation under the regulation of chemokines and cytokines. Arterial remodeling in allografts eventually causes ischemic graft failure. The pathogenesis is multi-factorial with both immunologic and non-immunological factors being involved. The immunological factors have been discussed extensively in other articles. This review focuses mainly on the arterial remodeling that occurs in 3 layers of vessel walls including intimal injury, accumulation of smooth muscle-like cells in the neointimal, medial smooth muscle cell apoptosis, adventitial fibrosis, and deposition of extracellular matrix.
transplantation / chronic rejection / neointimal / immunology / arterial remodeling / allograft vasculopathy
[1] |
Sayegh MH, Carpenter CB. Transplantation 50 years later—progress, challenges, and promises. N Engl J Med 2004; 351(26): 2761–2766
CrossRef
Pubmed
Google scholar
|
[2] |
Belperio JA, Weigt SS, Fishbein MC, Lynch JP 3rd. Chronic lung allograft rejection: mechanisms and therapy. Proc Am Thorac Soc 2009; 6(1): 108–121
CrossRef
Pubmed
Google scholar
|
[3] |
Hathout E, Beeson WL, Kuhn M, Johnston J, Fitts J, Razzouk A, Bailey L, Chinnock RE. Cardiac allograft vasculopathy in pediatric heart transplant recipients. Transpl Int 2006; 19(3): 184–189
CrossRef
Pubmed
Google scholar
|
[4] |
Religa P, Bojakowski K, Gaciong Z, Thyberg J, Hedin U. Arteriosclerosis in rat aortic allografts: dynamics of cell growth, apoptosis and expression of extracellular matrix proteins. Mol Cell Biochem 2003; 249(1-2): 75–83
CrossRef
Pubmed
Google scholar
|
[5] |
Yuan X, Paez-Cortez J, Schmitt-Knosalla I, D’Addio F, Mfarrej B, Donnarumma M, Habicht A, Clarkson MR, Iacomini J, Glimcher LH, Sayegh MH, Ansari MJ. A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy. J Exp Med 2008; 205(13): 3133–3144
CrossRef
Pubmed
Google scholar
|
[6] |
Joosten SA, van Kooten C, Paul LC. Pathogenesis of chronic allograft rejection. Transpl Int 2003; 16(3): 137–145
CrossRef
Pubmed
Google scholar
|
[7] |
Hamano K, Bashuda H, Ito H, Shirasawa B, Okumura K, Esato K. Graft vasculopathy and tolerance: does the balance of Th cells contribute to graft vasculopathy? J Surg Res 2000; 93(1): 28–34
CrossRef
Pubmed
Google scholar
|
[8] |
Rose ML. Interferon-γ and intimal hyperplasia. Circ Res 2007; 101(6): 542–544
CrossRef
Pubmed
Google scholar
|
[9] |
Vessie EL, Hirsch GM, Lee TD. Aortic allograft vasculopathy is mediated by CD8(+) T cells in Cyclosporin A immunosuppressed mice. Transpl Immunol 2005; 15(1): 35–44
CrossRef
Pubmed
Google scholar
|
[10] |
Wang CY, Aronson I, Takuma S, Homma S, Naka Y, Alshafie T, Brovkovych V, Malinski T, Oz MC, Pinsky DJ. cAMP pulse during preservation inhibits the late development of cardiac isograft and allograft vasculopathy. Circ Res 2000; 86(9): 982–988
Pubmed
|
[11] |
Lawson C, Wolf S. ICAM-1 signaling in endothelial cells. Pharmacol Rep 2009; 61(1): 22–32
Pubmed
|
[12] |
Rahmani M, Cruz RP, Granville DJ, McManus BM. Allograft vasculopathy versus atherosclerosis. Circ Res 2006; 99(8): 801–815
CrossRef
Pubmed
Google scholar
|
[13] |
Mehra MR. Contemporary concepts in prevention and treatment of cardiac allograft vasculopathy. Am J Transplant 2006; 6(6): 1248–1256
CrossRef
Pubmed
Google scholar
|
[14] |
Waller J, Brook NR, Nicholson ML. Cardiac allograft vasculopathy: current concepts and treatment. Transpl Int 2003; 16(6): 367–375
CrossRef
Pubmed
Google scholar
|
[15] |
Ramzy D, Rao V, Brahm J, Miriuka S, Delgado D, Ross HJ. Cardiac allograft vasculopathy: a review. Can J Surg 2005; 48(4): 319–327
Pubmed
|
[16] |
Hu Y, Davison F, Zhang Z, Xu Q. Endothelial replacement and angiogenesis in arteriosclerotic lesions of allografts are contributed by circulating progenitor cells. Circulation 2003; 108(25): 3122–3127
CrossRef
Pubmed
Google scholar
|
[17] |
Der H, Kerekes G, Veres K, Szodoray P, Toth J, Lakos G, Szegedi G, Soltesz P. Impaired endothelial function and increased carotid intima-media thickness in association with elevated von Willebrand antigen level in primary antiphospholipid syndrome. Lupus 2007; 16(7): 497–503
CrossRef
Pubmed
Google scholar
|
[18] |
Raichlin E, Kushwaha SS, Lennon RJ, Frantz RP, Edwards BS, Prasad A, Rihal CS, Lerman A. Features of cardiac allograft coronary endothelial dysfunction. Am J Cardiol 2009; 103(8): 1154–1158
CrossRef
Pubmed
Google scholar
|
[19] |
Kofler S, Petrakopoulou P, Nickel T, Weis M. Cardiac allograft endothelial dysfunction. Eur J Clin Pharmacol 2006; 62(Suppl 1): 79–82
CrossRef
Google scholar
|
[20] |
Khazaei M, Moien-Afshari F, Laher I. Vascular endothelial function in health and diseases. Pathophysiology 2008; 15(1): 49–67
CrossRef
Pubmed
Google scholar
|
[21] |
Russell ME. Macrophages in chronic rejection and graft vasculopathy: a diverse and dynamic cell with myriad roles. Transplant Rev 1999; 13(3): 157–168
CrossRef
Google scholar
|
[22] |
Woywodt A, Schroeder M, Gwinner W, Mengel M, Jaeger M, Schwarz A, Haller H, Haubitz M. Elevated numbers of circulating endothelial cells in renal transplant recipients. Transplantation 2003; 76(1): 1–4
CrossRef
Pubmed
Google scholar
|
[23] |
Lagaaij EL, Cramer-Knijnenburg GF, van Kemenade FJ, van Es LA, Bruijn JA, van Krieken JH. Endothelial cell chimerism after renal transplantation and vascular rejection. Lancet 2001; 357(9249): 33–37
CrossRef
Pubmed
Google scholar
|
[24] |
Timmermans F, Plum J, Yöder MC, Ingram DA, Vandekerckhove B, Case J. Endothelial progenitor cells: identity defined? J Cell Mol Med 2009; 13(1): 87–102
CrossRef
Pubmed
Google scholar
|
[25] |
Metharom P, Caplice NM. Vascular disease: a new progenitor biology. Curr Vasc Pharmacol 2007; 5(1): 61–68
CrossRef
Pubmed
Google scholar
|
[26] |
Liu CS, Wang SH, Metharom P, Caplice NM. Myeloid lineage of human endothelial outgrowth cells circulating in blood and vasculogenic endothelial-like cells in the diseased vessel wall. J Vasc Res 2009; 46(6): 581–591
CrossRef
Pubmed
Google scholar
|
[27] |
Zhang F, Tsai S, Kato K, Yamanouchi D, Wang C, Rafii S, Liu B, Kent KC. Transforming growth factor-β promotes recruitment of bone marrow cells and bone marrow-derived mesenchymal stem cells through stimulation of MCP-1 production in vascular smooth muscle cells. J Biol Chem 2009; 284(26): 17564–17574
CrossRef
Pubmed
Google scholar
|
[28] |
Reinders ME, Rabelink TJ, Briscoe DM. Angiogenesis and endothelial cell repair in renal disease and allograft rejection. J Am Soc Nephrol 2006; 17(4): 932–942
CrossRef
Pubmed
Google scholar
|
[29] |
Ii M, Losordo DW. Transplant graft vasculopathy: a dark side of bone marrow stem cells? Circulation 2003; 108(25): 3056–3058
CrossRef
Pubmed
Google scholar
|
[30] |
Cailhier JF, Laplante P, Hébert MJ. Endothelial apoptosis and chronic transplant vasculopathy: recent results, novel mechanisms. Am J Transplant 2006; 6(2): 247–253
CrossRef
Pubmed
Google scholar
|
[31] |
Kang DH, Kang SW, Jeong HJ, Kim YS, Yang CW, Johnson RJ. Transplant graft vasculopathy: an emerging target for prevention and treatment of renal allograft dysfunction. Yonsei Med J 2004; 45(6): 1053–1058
Pubmed
|
[32] |
Mitchell RN. Allograft arteriopathy: pathogenesis update. Cardiovasc Pathol 2004; 13(1): 33–40
CrossRef
Pubmed
Google scholar
|
[33] |
Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, Hirai H, Makuuchi M, Hirata Y, Nagai R. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nat Med 2002; 8(4): 403–409
CrossRef
Pubmed
Google scholar
|
[34] |
Mitchell RN, Libby P. Vascular remodeling in transplant vasculopathy. Circ Res 2007; 100(7): 967–978
CrossRef
Pubmed
Google scholar
|
[35] |
Zhang LN, Wilson DW, da Cunha V, Sullivan ME, Vergona R, Rutledge JC, Wang YX. Endothelial NO synthase deficiency promotes smooth muscle progenitor cells in association with upregulation of stromal cell-derived factor-1alpha in a mouse model of carotid artery ligation. Arterioscler Thromb Vasc Biol 2006; 26(4): 765–772
CrossRef
Pubmed
Google scholar
|
[36] |
Libby P, Pober JS. Chronic rejection. Immunity 2001; 14(4): 387–397
CrossRef
Pubmed
Google scholar
|
[37] |
Ma X, Hibbert B, White D. Contribution of recipient-derived cells in allograft neointima formation and the response to stent implantation. PloS ONE 2008; 3: e1894
CrossRef
Pubmed
Google scholar
|
[38] |
Song ZF, Li W, Zheng QC, Shang D, Shu XG, Guan SM. The origin of neointimal smooth muscle cells in transplant arteriosclerosis from recipient bone-marrow cells in rat aortic allograft. J Huazhong Univ Sci Technolog Med Sci 2007; 27(3): 303–306
CrossRef
Pubmed
Google scholar
|
[39] |
George J, Afek A, Abashidze A, Shmilovich H, Deutsch V, Kopolovich J, Miller H, Keren G. Transfer of endothelial progenitor and bone marrow cells influences atherosclerotic plaque size and composition in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 2005; 25(12): 2636–2641
CrossRef
Pubmed
Google scholar
|
[40] |
Religa P, Grudzinska MK, Bojakowski K, Soin J, Nozynski J, Zakliczynski M, Gaciong Z, Zembala M, Söderberg-Nauclér C. Host-derived smooth muscle cells accumulate in cardiac allografts: role of inflammation and monocyte chemoattractant protein 1. PLoS ONE 2009; 4(1): e4187
CrossRef
Pubmed
Google scholar
|
[41] |
Schober A. Chemokines in vascular dysfunction and remodeling. Arterioscler Thromb Vasc Biol 2008; 28(11): 1950–1959
CrossRef
Pubmed
Google scholar
|
[42] |
Sipkins DA, Wei X, Wu JW, Runnels JM, Côté D, Means TK, Luster AD, Scadden DT, Lin CP. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 2005; 435(7044): 969–973
CrossRef
Pubmed
Google scholar
|
[43] |
Sackstein R, Merzaban JS, Cain DW, Dagia NM, Spencer JA, Lin CP, Wohlgemuth R. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med 2008; 14(2): 181–187
CrossRef
Pubmed
Google scholar
|
[44] |
Henschler R, Deak E, Seifried E. Homing of mesenchymal stem cells. Transfus Med Hemother 2008; 35(4): 306–312
CrossRef
Pubmed
Google scholar
|
[45] |
Currie M, Zaki AM, Nejat S, Hirsch GM, Lee TD. Immunologic targets in the etiology of allograft vasculopathy: endothelium versus media. Transpl Immunol 2008; 19(2): 120–126
CrossRef
Pubmed
Google scholar
|
[46] |
Han CI, Campbell GR, Campbell JH. Circulating bone marrow cells can contribute to neointimal formation. J Vasc Res 2001; 38(2): 113–119
CrossRef
Pubmed
Google scholar
|
[47] |
Hart-Matyas M, Nejat S, Jordan JL, Hirsch GM, Lee TD. IFN-γ and Fas/FasL pathways cooperate to induce medial cell loss and neointimal lesion formation in allograft vasculopathy. Transpl Immunol 2010; 22(3-4): 157–164
CrossRef
Pubmed
Google scholar
|
[48] |
Karshovska E, Schober A. Mechanisms of arterial remodeling and neointima formation: an updated view on the chemokine system. Drug Discov Today Dis Mech 2008; 5(3-4): 293–298
CrossRef
Google scholar
|
[49] |
van Oostrom O, Fledderus JO, de Kleijn DP, Pasterkamp G, Verhaar MC. Smooth muscle progenitor cells: friend or foe in vascular disease? Curr Stem Cell Res Ther 2009; 4(2): 131–140
CrossRef
Pubmed
Google scholar
|
[50] |
Eisen H, Kobashigawa J, Starling RC, Valantine H, Mancini D. Improving outcomes in heart transplantation: the potential of proliferation signal inhibitors. Transplant Proc 2005; 37(Suppl 4): 4–17
CrossRef
Pubmed
Google scholar
|
[51] |
Xu Q. Stem cells and transplant arteriosclerosis. Circ Res 2008; 102(9): 1011–1024
CrossRef
Pubmed
Google scholar
|
[52] |
Jevon M, Dorling A, Hornick PI. Progenitor cells and vascular disease. Cell Prolif 2008; 41(Suppl 1): 146–164
CrossRef
Pubmed
Google scholar
|
[53] |
Sartore S, Chiavegato A, Faggin E, Franch R, Puato M, Ausoni S, Pauletto P. Contribution of adventitial fibroblasts to neointima formation and vascular remodeling: from innocent bystander to active participant. Circ Res 2001; 89(12): 1111–1121
CrossRef
Pubmed
Google scholar
|
[54] |
Gössl M, Lerman A. Endothelin: beyond a vasoconstrictor. Circulation 2006; 113(9): 1156–1158
CrossRef
Pubmed
Google scholar
|
[55] |
Gutterman DD. Adventitia-dependent influences on vascular function. Am J Physiol 1999; 277(4 Pt 2): H1265–H1272
Pubmed
|
[56] |
Sun H, Lu X, Wu S, Sun W. The effects of C-reactive protein, interleukin-6, and tumor necrosis factor-α in rat allograft adventitial inflammation and allograft arteriosclerosis. Transplant Proc 2009; 41(9): 3909–3912
CrossRef
Pubmed
Google scholar
|
[57] |
Shimizu K, Mitchell RN. The role of chemokines in transplant graft arterial disease. Arterioscler Thromb Vasc Biol 2008; 28(11): 1937–1949
CrossRef
Pubmed
Google scholar
|
[58] |
Khan R, Agrotis A, Bobik A. Understanding the role of transforming growth factor-beta1 in intimal thickening after vascular injury. Cardiovasc Res 2007; 74(2): 223–234
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |