RESEARCH ARTICLE

Glycosylation of dentin matrix protein 1 is critical for fracture healing via promoting chondrogenesis

  • Hui Xue 1 ,
  • Dike Tao 1 ,
  • Yuteng Weng 1 ,
  • Qiqi Fan 1 ,
  • Shuang Zhou 1 ,
  • Ruilin Zhang 1 ,
  • Han Zhang 2 ,
  • Rui Yue 3 ,
  • Xiaogang Wang , 4 ,
  • Zuolin Wang , 1 ,
  • Yao Sun , 1
Expand
  • 1. Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
  • 2. School & Hospital of Stomatology, Tongji University, Shanghai 200072, China
  • 3. School of Life Sciences and Technology, Tongji University, Shanghai 200072, China
  • 4. Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100083, China

Received date: 17 Sep 2018

Accepted date: 25 Feb 2019

Published date: 15 Oct 2019

Copyright

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

Abstract

Fractures are frequently occurring diseases that endanger human health. Crucial to fracture healing is cartilage formation, which provides a bone-regeneration environment. Cartilage consists of both chondrocytes and extracellular matrix (ECM). The ECM of cartilage includes collagens and various types of proteoglycans (PGs), which play important roles in maintaining primary stability in fracture healing. The PG form of dentin matrix protein 1 (DMP1-PG) is involved in maintaining the health of articular cartilage and bone. Our previous data have shown that DMP1-PG is richly expressed in the cartilaginous calluses of fracture sites. However, the possible significant role of DMP1-PG in chondrogenesis and fracture healing is unknown. To further detect the potential role of DMP1-PG in fracture repair, we established a mouse fracture model by using a glycosylation site mutant DMP1 mouse (S89G-DMP1 mouse). Upon inspection, fewer cartilaginous calluses and down-regulated expression levels of chondrogenesis genes were observed in the fracture sites of S89G-DMP1 mice. Given the deficiency of DMP1-PG, the impaired IL-6/JAK/STAT signaling pathway was observed to affect the chondrogenesis of fracture healing. Overall, these results suggest that DMP1-PG is an indispensable proteoglycan in chondrogenesis during fracture healing.

Cite this article

Hui Xue , Dike Tao , Yuteng Weng , Qiqi Fan , Shuang Zhou , Ruilin Zhang , Han Zhang , Rui Yue , Xiaogang Wang , Zuolin Wang , Yao Sun . Glycosylation of dentin matrix protein 1 is critical for fracture healing via promoting chondrogenesis[J]. Frontiers of Medicine, 2019 , 13(5) : 575 -589 . DOI: 10.1007/s11684-019-0693-9

Acknowledgements

This study was supported by Key Project of Chinese National Programs for Research and Development (No. 2016YFC1102075, Yao Sun), National Natural Science Foundation of China (Nos. 81470715, 81771043, 81822012, Yao Sun; 81770873, 81722031, Xiaogang Wang; 81670962, Zuolin Wang), Shanghai Health System (No. 2017 BR009, Yao Sun), Tongji University (Nos. TJ15042119036 and TJ2000219143, Zuolin Wang), and Chinese Universities Scientific Fund (No. kx0200020173386, Rui Yue). We would like to appreciate Dr. Chunlin Qin (College of Dentistry, Texas A&M University) for providing the DMP1-N antibody and assistance. We thank Qigang Wang Group, School of Chemical Science and Engineering, Tongji University for providing biomechanical testing machine. We would also like to thank Xiaojuan Yang, Gongchen Li, and Mengmeng Liu for their help in revising the paper.

Compliance with ethics guidelines

Hui Xue, Dike Tao, Yuteng Weng, Qiqi Fan, Shuang Zhou, Ruilin Zhang, Han Zhang, Rui Yue, Xiaogang Wang, Zuolin Wang, and Yao Sun declare no conflict of interest. All institutional and national guidelines for the care and use of laboratory animals were followed.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-019-0693-9 and is accessible for authorized users.
1
Schindeler A, McDonald MM, Bokko P, Little DG. Bone remodeling during fracture repair: the cellular picture. Semin Cell Dev Biol 2008; 19(5): 459–466

DOI PMID

2
Ai-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res 2008; 87(2): 107–118

DOI PMID

3
Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 2012; 8(3): 133–143

DOI PMID

4
Williams JN, Kambrath AV, Patel RB, Kang KS, Mével E, Li Y, Cheng YH, Pucylowski AJ, Hassert MA, Voor MJ, Kacena MA, Thompson WR, Warden SJ, Burr DB, Allen MR, Robling AG, Sankar U. Inhibition of CaMKK2 enhances fracture healing by stimulating indian hedgehog signaling and accelerating endochondral ossification. J Bone Miner Res 2018; 33(5): 930–944

DOI PMID

5
Baht GS, Vi L, Alman BA. The role of the immune cells in fracture healing. Curr Osteoporos Rep 2018; 16(2): 138–145

DOI PMID

6
Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury 2005; 36(12): 1392–1404

DOI PMID

7
Sun Y, Weng Y, Zhang C, Liu Y, Kang C, Liu Z, Jing B, Zhang Q, Wang Z. Glycosylation of dentin matrix protein 1 is critical for osteogenesis. Sci Rep 2015; 5(1): 17518

DOI PMID

8
Bertassoni LE, Swain MV. The contribution of proteoglycans to the mechanical behavior of mineralized tissues. J Mech Behav Biomed Mater 2014; 38: 91–104

DOI PMID

9
Weng Y, Liu Y, Du H, Li L, Jing B, Zhang Q, Wang X, Wang Z, Sun Y. Glycosylation of DMP1 is essential for chondrogenesis of condylar cartilage. J Dent Res 2017; 96(13): 1535–1545

DOI PMID

10
Furukawa JI, Okada K, Shinohara Y. Glycomics of human embryonic stem cells and human induced pluripotent stem cells. Glycoconj J 2017; 34(6): 807–815

DOI PMID

11
Gao Y, Liu S, Huang J, Guo W, Chen J, Zhang L, Zhao B, Peng J, Wang A, Wang Y, Xu W, Lu S, Yuan M, Guo Q. The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. BioMed Res Int 2014; 2014: 648459

DOI PMID

12
Embree MC, Kilts TM, Ono M, Inkson CA, Syed-Picard F, Karsdal MA, Oldberg A, Bi Y, Young MF. Biglycan and fibromodulin have essential roles in regulating chondrogenesis and extracellular matrix turnover in temporomandibular joint osteoarthritis. Am J Pathol 2010; 176(2): 812–826

DOI PMID

13
Myren M, Kirby DJ, Noonan ML, Maeda A, Owens RT, Ricard-Blum S, Kram V, Kilts TM, Young MF. Biglycan potentially regulates angiogenesis during fracture repair by altering expression and function of endostatin. Matrix Biol 2016; 52-54: 141–150

DOI PMID

14
Berendsen AD, Pinnow EL, Maeda A, Brown AC, McCartney-Francis N, Kram V, Owens RT, Robey PG, Holmbeck K, de Castro LF, Kilts TM, Young MF. Biglycan modulates angiogenesis and bone formation during fracture healing. Matrix Biol 2014; 35: 223–231

DOI PMID

15
George A, Sabsay B, Simonian PA, Veis A. Characterization of a novel dentin matrix acidic phosphoprotein. Implications for induction of biomineralization. J Biol Chem 1993; 268(17): 12624–12630

PMID

16
D’Souza RN, Cavender A, Sunavala G, Alvarez J, Ohshima T, Kulkarni AB, MacDougall M. Gene expression patterns of murine dentin matrix protein 1 (Dmp1) and dentin sialophosphoprotein (DSPP) suggest distinct developmental functions in vivo. J Bone Miner Res 1997; 12(12): 2040–2049

DOI PMID

17
Qin C, Brunn JC, Cook RG, Orkiszewski RS, Malone JP, Veis A, Butler WT. Evidence for the proteolytic processing of dentin matrix protein 1. Identification and characterization of processed fragments and cleavage sites. J Biol Chem 2003; 278(36): 34700–34708

DOI PMID

18
Qin C, D’Souza R, Feng JQ. Dentin matrix protein 1 (DMP1): new and important roles for biomineralization and phosphate homeostasis. J Dent Res 2007; 86(12): 1134–1141

DOI PMID

19
Lu Y, Yuan B, Qin C, Cao Z, Xie Y, Dallas SL, McKee MD, Drezner MK, Bonewald LF, Feng JQ. The biological function of DMP-1 in osteocyte maturation is mediated by its 57-kDa C-terminal fragment. J Bone Miner Res 2011; 26(2): 331–340

DOI PMID

20
Lu Y, Qin C, Xie Y, Bonewald LF, Feng JQ. Studies of the DMP1 57-kDa functional domain both in vivo and in vitro. Cells Tissues Organs 2009; 189(1-4): 175–185

DOI PMID

21
Sun Y, Ma S, Zhou J, Yamoah AK, Feng JQ, Hinton RJ, Qin C. Distribution of small integrin-binding ligand, N-linked glycoproteins (SIBLING) in the articular cartilage of the rat femoral head. J Histochem Cytochem 2010; 58(11): 1033–1043

DOI PMID

22
Sun Y, Chen L, Ma S, Zhou J, Zhang H, Feng JQ, Qin C. Roles of DMP1 processing in osteogenesis, dentinogenesis and chondrogenesis. Cells Tissues Organs 2011; 194(2-4): 199–204

DOI PMID

23
Qin C, Huang B, Wygant JN, McIntyre BW, McDonald CH, Cook RG, Butler WT. A chondroitin sulfate chain attached to the bone dentin matrix protein 1 NH2-terminal fragment. J Biol Chem 2006; 281(12): 8034–8040

DOI PMID

24
Gericke A, Qin C, Sun Y, Redfern R, Redfern D, Fujimoto Y, Taleb H, Butler WT, Boskey AL. Different forms of DMP1 play distinct roles in mineralization. J Dent Res 2010; 89(4): 355–359

DOI PMID

25
Loi F, Córdova LA, Pajarinen J, Lin TH, Yao Z, Goodman SB. Inflammation, fracture and bone repair. Bone 2016; 86: 119–130

DOI PMID

26
Bradaschia-Correa V, Josephson AM, Mehta D, Mizrahi M, Neibart SS, Liu C, Kennedy OD, Castillo AB, Egol KA, Leucht P. The selective serotonin reuptake inhibitor fluoxetine directly inhibits osteoblast differentiation and mineralization during fracture healing in mice. J Bone Miner Res 2017; 32(4): 821–833

DOI PMID

27
Baht GS, Nadesan P, Silkstone D, Alman BA. Pharmacologically targeting β-catenin for NF1 associated deficiencies in fracture repair. Bone 2017; 98: 31–36

DOI PMID

28
Balic A, Aguila HL, Caimano MJ, Francone VP, Mina M. Characterization of stem and progenitor cells in the dental pulp of erupted and unerupted murine molars. Bone 2010; 46(6): 1639–1651

DOI PMID

29
Jing B, Zhang C, Liu X, Zhou L, Liu J, Yao Y, Yu J, Weng Y, Pan M, Liu J, Wang Z, Sun Y, Sun YE. Glycosylation of dentin matrix protein 1 is a novel key element for astrocyte maturation and BBB integrity. Protein Cell 2018; 9(3): 298–309

DOI PMID

30
Wang C, Abu-Amer Y, O’Keefe RJ, Shen J. Loss of Dnmt3b in chondrocytes leads to delayed endochondral ossification and fracture repair. J Bone Miner Res 2018; 33(2): 283–297

DOI PMID

31
Baht GS, Silkstone D, Nadesan P, Whetstone H, Alman BA. Activation of hedgehog signaling during fracture repair enhances osteoblastic-dependent matrix formation. J Orthop Res 2014; 32(4): 581–586

DOI PMID

32
Majidinia M, Sadeghpour A and Yousefi B. The roles of signaling pathways in bone repair and regeneration. J Cell Physiol 2018; 233(4): 2937–2948

DOI PMID

33
Ghiasi MS, Chen J, Vaziri A, Rodriguez EK, Nazarian A. Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone Rep 2017; 6: 87–100

DOI PMID

34
Klontzas ME, Kenanidis EI, MacFarlane RJ, Michail T, Potoupnis ME, Heliotis M, Mantalaris A, Tsiridis E. Investigational drugs for fracture healing: preclinical & clinical data. Expert Opin Investig Drugs 2016; 25(5): 585–596

DOI PMID

35
Richards CJ, Graf KW Jr, Mashru RP. The effect of opioids, alcohol, and nonsteroidal anti-inflammatory drugs on fracture union. Orthop Clin North Am 2017; 48(4): 433–443

DOI PMID

36
Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 2003; 88(5): 873–884

DOI PMID

37
Tsiridis E, Upadhyay N, Giannoudis P. Molecular aspects of fracture healing: which are the important molecules? Injury 2007; 38(Suppl 1): S11–S25

DOI PMID

38
Hsu WK, Anderson PA. Odontoid fractures: update on management. J Am Acad Orthop Surg 2010; 18(7): 383–394

DOI PMID

39
Williams DR Jr, Presar AR, Richmond AT, Mjaatvedt CH, Hoffman S, Capehart AA. Limb chondrogenesis is compromised in the versican deficient hdf mouse. Biochem Biophys Res Commun 2005; 334(3): 960–966

DOI PMID

40
Lord MS, Farrugia BL, Rnjak-Kovacina J, Whitelock JM. Current serological possibilities for the diagnosis of arthritis with special focus on proteins and proteoglycans from the extracellular matrix. Expert Rev Mol Diagn 2015; 15(1): 77–95

DOI PMID

41
Nikitovic D, Aggelidakis J, Young MF, Iozzo RV, Karamanos NK, Tzanakakis GN. The biology of small leucine-rich proteoglycans in bone pathophysiology. J Biol Chem 2012; 287(41): 33926–33933

DOI PMID

42
Li S, Cao J, Caterson B, Hughes CE. Proteoglycan metabolism, cell death and Kashin-Beck disease. Glycoconj J 2012; 29(5-6): 241–248

DOI PMID

43
Kukurba KR, Montgomery SB. RNA sequencing and analysis. Cold Spring Harb Protoc 2015; 2015(11): 951–969

DOI PMID

44
Naka T, Nishimoto N, Kishimoto T. The paradigm of IL-6: from basic science to medicine. Arthritis Res 2002; 4(Suppl 3): S233–S242

DOI PMID

45
O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 2015; 66(1): 311–328

DOI PMID

46
Liongue C, Sertori R, Ward AC. Evolution of cytokine receptor signaling. J Immunol 2016;197(1):11–18

DOI PMID

47
Beier F, Loeser RF. Biology and pathology of Rho GTPase, PI-3 kinase-Akt, and MAP kinase signaling pathways in chondrocytes. J Cell Biochem 2010; 110(3): 573–580

DOI PMID

48
Fazzalari NL. Bone fracture and bone fracture repair. Osteoporos Int 2011; 22(6): 2003–2006

DOI PMID

49
Sun G, Wang Z, Ti Y, Wang Y, Wang J, Zhao J, Qian H. STAT3 promotes bone fracture healing by enhancing the FOXP3 expression and the suppressive function of regulatory T cells. APMIS 2017; 125(8): 752–760

DOI PMID

50
Mountziaris PM, Spicer PP, Kasper FK, Mikos AG. Harnessing and modulating inflammation in strategies for bone regeneration. Tissue Eng Part B Rev 2011; 17(6): 393–402

DOI PMID

51
Osta B, Benedetti G, Miossec P. Classical and paradoxical effects of TNF-a on bone homeostasis. Front Immunol 2014; 5: 48

DOI PMID

52
Wu AC, Raggatt LJ, Alexander KA, Pettit AR. Unraveling macrophage contributions to bone repair. Bonekey Rep 2013; 2: 373

DOI PMID

53
Jang YN, Baik EJ. JAK-STAT pathway and myogenic differentiation. JAK-STAT 2013; 2(2): e23282

DOI PMID

54
Li J. JAK-STAT and bone metabolism. JAK-STAT 2013; 2(3): e23930

DOI PMID

55
Kondo M, Yamaoka K, Sakata K, Sonomoto K, Lin L, Nakano K, Tanaka Y. Contribution of the interleukin-6/STAT-3 signaling pathway to chondrogenic differentiation of human mesenchymal stem cells. Arthritis Rheumatol 2015; 67(5): 1250–1260

DOI PMID

56
Pass C, MacRae VE, Huesa C, Faisal Ahmed S, Farquharson C. SOCS2 is the critical regulator of GH action in murine growth plate chondrogenesis. J Bone Miner Res 2012; 27(5): 1055–1066

DOI PMID

57
Kim H, Sonn JK. Rac1 promotes chondrogenesis by regulating STAT3 signaling pathway. Cell Biol Int 2016; 40(9): 976–983

DOI PMID

58
Hankenson KD, Dishowitz M, Gray C, Schenker M. Angiogenesis in bone regeneration. Injury 2011; 42(6): 556–561

DOI PMID

59
Hankenson KD, Gagne K, Shaughnessy M. Extracellular signaling molecules to promote fracture healing and bone regeneration. Adv Drug Deliv Rev 2015; 94: 3–12

DOI PMID

60
Alman BA. The role of hedgehog signalling in skeletal health and disease. Nat Rev Rheumatol 2015; 11(9): 552–560

DOI PMID

61
Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S, Rios H, Drezner MK, Quarles LD, Bonewald LF, White KE. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 2006; 38(11): 1310–1315

DOI PMID

Outlines

/