Glycosylation of dentin matrix protein 1 is critical for fracture healing via promoting chondrogenesis

Hui Xue, Dike Tao, Yuteng Weng, Qiqi Fan, Shuang Zhou, Ruilin Zhang, Han Zhang, Rui Yue, Xiaogang Wang, Zuolin Wang, Yao Sun

PDF(12088 KB)
PDF(12088 KB)
Front. Med. ›› 2019, Vol. 13 ›› Issue (5) : 575-589. DOI: 10.1007/s11684-019-0693-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Glycosylation of dentin matrix protein 1 is critical for fracture healing via promoting chondrogenesis

Author information +
History +

Abstract

Fractures are frequently occurring diseases that endanger human health. Crucial to fracture healing is cartilage formation, which provides a bone-regeneration environment. Cartilage consists of both chondrocytes and extracellular matrix (ECM). The ECM of cartilage includes collagens and various types of proteoglycans (PGs), which play important roles in maintaining primary stability in fracture healing. The PG form of dentin matrix protein 1 (DMP1-PG) is involved in maintaining the health of articular cartilage and bone. Our previous data have shown that DMP1-PG is richly expressed in the cartilaginous calluses of fracture sites. However, the possible significant role of DMP1-PG in chondrogenesis and fracture healing is unknown. To further detect the potential role of DMP1-PG in fracture repair, we established a mouse fracture model by using a glycosylation site mutant DMP1 mouse (S89G-DMP1 mouse). Upon inspection, fewer cartilaginous calluses and down-regulated expression levels of chondrogenesis genes were observed in the fracture sites of S89G-DMP1 mice. Given the deficiency of DMP1-PG, the impaired IL-6/JAK/STAT signaling pathway was observed to affect the chondrogenesis of fracture healing. Overall, these results suggest that DMP1-PG is an indispensable proteoglycan in chondrogenesis during fracture healing.

Keywords

fracture / extracellular matrix / dentin matrix protein 1 / proteoglycan / cartilage

Cite this article

Download citation ▾
Hui Xue, Dike Tao, Yuteng Weng, Qiqi Fan, Shuang Zhou, Ruilin Zhang, Han Zhang, Rui Yue, Xiaogang Wang, Zuolin Wang, Yao Sun. Glycosylation of dentin matrix protein 1 is critical for fracture healing via promoting chondrogenesis. Front. Med., 2019, 13(5): 575‒589 https://doi.org/10.1007/s11684-019-0693-9

References

[1]
Schindeler A, McDonald MM, Bokko P, Little DG. Bone remodeling during fracture repair: the cellular picture. Semin Cell Dev Biol 2008; 19(5): 459–466
CrossRef Pubmed Google scholar
[2]
Ai-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA. Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res 2008; 87(2): 107–118
CrossRef Pubmed Google scholar
[3]
Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 2012; 8(3): 133–143
CrossRef Pubmed Google scholar
[4]
Williams JN, Kambrath AV, Patel RB, Kang KS, Mével E, Li Y, Cheng YH, Pucylowski AJ, Hassert MA, Voor MJ, Kacena MA, Thompson WR, Warden SJ, Burr DB, Allen MR, Robling AG, Sankar U. Inhibition of CaMKK2 enhances fracture healing by stimulating indian hedgehog signaling and accelerating endochondral ossification. J Bone Miner Res 2018; 33(5): 930–944
CrossRef Pubmed Google scholar
[5]
Baht GS, Vi L, Alman BA. The role of the immune cells in fracture healing. Curr Osteoporos Rep 2018; 16(2): 138–145
CrossRef Pubmed Google scholar
[6]
Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury 2005; 36(12): 1392–1404
CrossRef Pubmed Google scholar
[7]
Sun Y, Weng Y, Zhang C, Liu Y, Kang C, Liu Z, Jing B, Zhang Q, Wang Z. Glycosylation of dentin matrix protein 1 is critical for osteogenesis. Sci Rep 2015; 5(1): 17518
CrossRef Pubmed Google scholar
[8]
Bertassoni LE, Swain MV. The contribution of proteoglycans to the mechanical behavior of mineralized tissues. J Mech Behav Biomed Mater 2014; 38: 91–104
CrossRef Pubmed Google scholar
[9]
Weng Y, Liu Y, Du H, Li L, Jing B, Zhang Q, Wang X, Wang Z, Sun Y. Glycosylation of DMP1 is essential for chondrogenesis of condylar cartilage. J Dent Res 2017; 96(13): 1535–1545
CrossRef Pubmed Google scholar
[10]
Furukawa JI, Okada K, Shinohara Y. Glycomics of human embryonic stem cells and human induced pluripotent stem cells. Glycoconj J 2017; 34(6): 807–815
CrossRef Pubmed Google scholar
[11]
Gao Y, Liu S, Huang J, Guo W, Chen J, Zhang L, Zhao B, Peng J, Wang A, Wang Y, Xu W, Lu S, Yuan M, Guo Q. The ECM-cell interaction of cartilage extracellular matrix on chondrocytes. BioMed Res Int 2014; 2014: 648459
CrossRef Pubmed Google scholar
[12]
Embree MC, Kilts TM, Ono M, Inkson CA, Syed-Picard F, Karsdal MA, Oldberg A, Bi Y, Young MF. Biglycan and fibromodulin have essential roles in regulating chondrogenesis and extracellular matrix turnover in temporomandibular joint osteoarthritis. Am J Pathol 2010; 176(2): 812–826
CrossRef Pubmed Google scholar
[13]
Myren M, Kirby DJ, Noonan ML, Maeda A, Owens RT, Ricard-Blum S, Kram V, Kilts TM, Young MF. Biglycan potentially regulates angiogenesis during fracture repair by altering expression and function of endostatin. Matrix Biol 2016; 52-54: 141–150
CrossRef Pubmed Google scholar
[14]
Berendsen AD, Pinnow EL, Maeda A, Brown AC, McCartney-Francis N, Kram V, Owens RT, Robey PG, Holmbeck K, de Castro LF, Kilts TM, Young MF. Biglycan modulates angiogenesis and bone formation during fracture healing. Matrix Biol 2014; 35: 223–231
CrossRef Pubmed Google scholar
[15]
George A, Sabsay B, Simonian PA, Veis A. Characterization of a novel dentin matrix acidic phosphoprotein. Implications for induction of biomineralization. J Biol Chem 1993; 268(17): 12624–12630
Pubmed
[16]
D’Souza RN, Cavender A, Sunavala G, Alvarez J, Ohshima T, Kulkarni AB, MacDougall M. Gene expression patterns of murine dentin matrix protein 1 (Dmp1) and dentin sialophosphoprotein (DSPP) suggest distinct developmental functions in vivo. J Bone Miner Res 1997; 12(12): 2040–2049
CrossRef Pubmed Google scholar
[17]
Qin C, Brunn JC, Cook RG, Orkiszewski RS, Malone JP, Veis A, Butler WT. Evidence for the proteolytic processing of dentin matrix protein 1. Identification and characterization of processed fragments and cleavage sites. J Biol Chem 2003; 278(36): 34700–34708
CrossRef Pubmed Google scholar
[18]
Qin C, D’Souza R, Feng JQ. Dentin matrix protein 1 (DMP1): new and important roles for biomineralization and phosphate homeostasis. J Dent Res 2007; 86(12): 1134–1141
CrossRef Pubmed Google scholar
[19]
Lu Y, Yuan B, Qin C, Cao Z, Xie Y, Dallas SL, McKee MD, Drezner MK, Bonewald LF, Feng JQ. The biological function of DMP-1 in osteocyte maturation is mediated by its 57-kDa C-terminal fragment. J Bone Miner Res 2011; 26(2): 331–340
CrossRef Pubmed Google scholar
[20]
Lu Y, Qin C, Xie Y, Bonewald LF, Feng JQ. Studies of the DMP1 57-kDa functional domain both in vivo and in vitro. Cells Tissues Organs 2009; 189(1-4): 175–185
CrossRef Pubmed Google scholar
[21]
Sun Y, Ma S, Zhou J, Yamoah AK, Feng JQ, Hinton RJ, Qin C. Distribution of small integrin-binding ligand, N-linked glycoproteins (SIBLING) in the articular cartilage of the rat femoral head. J Histochem Cytochem 2010; 58(11): 1033–1043
CrossRef Pubmed Google scholar
[22]
Sun Y, Chen L, Ma S, Zhou J, Zhang H, Feng JQ, Qin C. Roles of DMP1 processing in osteogenesis, dentinogenesis and chondrogenesis. Cells Tissues Organs 2011; 194(2-4): 199–204
CrossRef Pubmed Google scholar
[23]
Qin C, Huang B, Wygant JN, McIntyre BW, McDonald CH, Cook RG, Butler WT. A chondroitin sulfate chain attached to the bone dentin matrix protein 1 NH2-terminal fragment. J Biol Chem 2006; 281(12): 8034–8040
CrossRef Pubmed Google scholar
[24]
Gericke A, Qin C, Sun Y, Redfern R, Redfern D, Fujimoto Y, Taleb H, Butler WT, Boskey AL. Different forms of DMP1 play distinct roles in mineralization. J Dent Res 2010; 89(4): 355–359
CrossRef Pubmed Google scholar
[25]
Loi F, Córdova LA, Pajarinen J, Lin TH, Yao Z, Goodman SB. Inflammation, fracture and bone repair. Bone 2016; 86: 119–130
CrossRef Pubmed Google scholar
[26]
Bradaschia-Correa V, Josephson AM, Mehta D, Mizrahi M, Neibart SS, Liu C, Kennedy OD, Castillo AB, Egol KA, Leucht P. The selective serotonin reuptake inhibitor fluoxetine directly inhibits osteoblast differentiation and mineralization during fracture healing in mice. J Bone Miner Res 2017; 32(4): 821–833
CrossRef Pubmed Google scholar
[27]
Baht GS, Nadesan P, Silkstone D, Alman BA. Pharmacologically targeting β-catenin for NF1 associated deficiencies in fracture repair. Bone 2017; 98: 31–36
CrossRef Pubmed Google scholar
[28]
Balic A, Aguila HL, Caimano MJ, Francone VP, Mina M. Characterization of stem and progenitor cells in the dental pulp of erupted and unerupted murine molars. Bone 2010; 46(6): 1639–1651
CrossRef Pubmed Google scholar
[29]
Jing B, Zhang C, Liu X, Zhou L, Liu J, Yao Y, Yu J, Weng Y, Pan M, Liu J, Wang Z, Sun Y, Sun YE. Glycosylation of dentin matrix protein 1 is a novel key element for astrocyte maturation and BBB integrity. Protein Cell 2018; 9(3): 298–309
CrossRef Pubmed Google scholar
[30]
Wang C, Abu-Amer Y, O’Keefe RJ, Shen J. Loss of Dnmt3b in chondrocytes leads to delayed endochondral ossification and fracture repair. J Bone Miner Res 2018; 33(2): 283–297
CrossRef Pubmed Google scholar
[31]
Baht GS, Silkstone D, Nadesan P, Whetstone H, Alman BA. Activation of hedgehog signaling during fracture repair enhances osteoblastic-dependent matrix formation. J Orthop Res 2014; 32(4): 581–586
CrossRef Pubmed Google scholar
[32]
Majidinia M, Sadeghpour A and Yousefi B. The roles of signaling pathways in bone repair and regeneration. J Cell Physiol 2018; 233(4): 2937–2948
CrossRef Pubmed Google scholar
[33]
Ghiasi MS, Chen J, Vaziri A, Rodriguez EK, Nazarian A. Bone fracture healing in mechanobiological modeling: a review of principles and methods. Bone Rep 2017; 6: 87–100
CrossRef Pubmed Google scholar
[34]
Klontzas ME, Kenanidis EI, MacFarlane RJ, Michail T, Potoupnis ME, Heliotis M, Mantalaris A, Tsiridis E. Investigational drugs for fracture healing: preclinical & clinical data. Expert Opin Investig Drugs 2016; 25(5): 585–596
CrossRef Pubmed Google scholar
[35]
Richards CJ, Graf KW Jr, Mashru RP. The effect of opioids, alcohol, and nonsteroidal anti-inflammatory drugs on fracture union. Orthop Clin North Am 2017; 48(4): 433–443
CrossRef Pubmed Google scholar
[36]
Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 2003; 88(5): 873–884
CrossRef Pubmed Google scholar
[37]
Tsiridis E, Upadhyay N, Giannoudis P. Molecular aspects of fracture healing: which are the important molecules? Injury 2007; 38(Suppl 1): S11–S25
CrossRef Pubmed Google scholar
[38]
Hsu WK, Anderson PA. Odontoid fractures: update on management. J Am Acad Orthop Surg 2010; 18(7): 383–394
CrossRef Pubmed Google scholar
[39]
Williams DR Jr, Presar AR, Richmond AT, Mjaatvedt CH, Hoffman S, Capehart AA. Limb chondrogenesis is compromised in the versican deficient hdf mouse. Biochem Biophys Res Commun 2005; 334(3): 960–966
CrossRef Pubmed Google scholar
[40]
Lord MS, Farrugia BL, Rnjak-Kovacina J, Whitelock JM. Current serological possibilities for the diagnosis of arthritis with special focus on proteins and proteoglycans from the extracellular matrix. Expert Rev Mol Diagn 2015; 15(1): 77–95
CrossRef Pubmed Google scholar
[41]
Nikitovic D, Aggelidakis J, Young MF, Iozzo RV, Karamanos NK, Tzanakakis GN. The biology of small leucine-rich proteoglycans in bone pathophysiology. J Biol Chem 2012; 287(41): 33926–33933
CrossRef Pubmed Google scholar
[42]
Li S, Cao J, Caterson B, Hughes CE. Proteoglycan metabolism, cell death and Kashin-Beck disease. Glycoconj J 2012; 29(5-6): 241–248
CrossRef Pubmed Google scholar
[43]
Kukurba KR, Montgomery SB. RNA sequencing and analysis. Cold Spring Harb Protoc 2015; 2015(11): 951–969
CrossRef Pubmed Google scholar
[44]
Naka T, Nishimoto N, Kishimoto T. The paradigm of IL-6: from basic science to medicine. Arthritis Res 2002; 4(Suppl 3): S233–S242
CrossRef Pubmed Google scholar
[45]
O’Shea JJ, Schwartz DM, Villarino AV, Gadina M, McInnes IB, Laurence A. The JAK-STAT pathway: impact on human disease and therapeutic intervention. Annu Rev Med 2015; 66(1): 311–328
CrossRef Pubmed Google scholar
[46]
Liongue C, Sertori R, Ward AC. Evolution of cytokine receptor signaling. J Immunol 2016;197(1):11–18
CrossRef Pubmed Google scholar
[47]
Beier F, Loeser RF. Biology and pathology of Rho GTPase, PI-3 kinase-Akt, and MAP kinase signaling pathways in chondrocytes. J Cell Biochem 2010; 110(3): 573–580
CrossRef Pubmed Google scholar
[48]
Fazzalari NL. Bone fracture and bone fracture repair. Osteoporos Int 2011; 22(6): 2003–2006
CrossRef Pubmed Google scholar
[49]
Sun G, Wang Z, Ti Y, Wang Y, Wang J, Zhao J, Qian H. STAT3 promotes bone fracture healing by enhancing the FOXP3 expression and the suppressive function of regulatory T cells. APMIS 2017; 125(8): 752–760
CrossRef Pubmed Google scholar
[50]
Mountziaris PM, Spicer PP, Kasper FK, Mikos AG. Harnessing and modulating inflammation in strategies for bone regeneration. Tissue Eng Part B Rev 2011; 17(6): 393–402
CrossRef Pubmed Google scholar
[51]
Osta B, Benedetti G, Miossec P. Classical and paradoxical effects of TNF-a on bone homeostasis. Front Immunol 2014; 5: 48
CrossRef Pubmed Google scholar
[52]
Wu AC, Raggatt LJ, Alexander KA, Pettit AR. Unraveling macrophage contributions to bone repair. Bonekey Rep 2013; 2: 373
CrossRef Pubmed Google scholar
[53]
Jang YN, Baik EJ. JAK-STAT pathway and myogenic differentiation. JAK-STAT 2013; 2(2): e23282
CrossRef Pubmed Google scholar
[54]
Li J. JAK-STAT and bone metabolism. JAK-STAT 2013; 2(3): e23930
CrossRef Pubmed Google scholar
[55]
Kondo M, Yamaoka K, Sakata K, Sonomoto K, Lin L, Nakano K, Tanaka Y. Contribution of the interleukin-6/STAT-3 signaling pathway to chondrogenic differentiation of human mesenchymal stem cells. Arthritis Rheumatol 2015; 67(5): 1250–1260
CrossRef Pubmed Google scholar
[56]
Pass C, MacRae VE, Huesa C, Faisal Ahmed S, Farquharson C. SOCS2 is the critical regulator of GH action in murine growth plate chondrogenesis. J Bone Miner Res 2012; 27(5): 1055–1066
CrossRef Pubmed Google scholar
[57]
Kim H, Sonn JK. Rac1 promotes chondrogenesis by regulating STAT3 signaling pathway. Cell Biol Int 2016; 40(9): 976–983
CrossRef Pubmed Google scholar
[58]
Hankenson KD, Dishowitz M, Gray C, Schenker M. Angiogenesis in bone regeneration. Injury 2011; 42(6): 556–561
CrossRef Pubmed Google scholar
[59]
Hankenson KD, Gagne K, Shaughnessy M. Extracellular signaling molecules to promote fracture healing and bone regeneration. Adv Drug Deliv Rev 2015; 94: 3–12
CrossRef Pubmed Google scholar
[60]
Alman BA. The role of hedgehog signalling in skeletal health and disease. Nat Rev Rheumatol 2015; 11(9): 552–560
CrossRef Pubmed Google scholar
[61]
Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S, Rios H, Drezner MK, Quarles LD, Bonewald LF, White KE. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 2006; 38(11): 1310–1315
CrossRef Pubmed Google scholar

Acknowledgements

This study was supported by Key Project of Chinese National Programs for Research and Development (No. 2016YFC1102075, Yao Sun), National Natural Science Foundation of China (Nos. 81470715, 81771043, 81822012, Yao Sun; 81770873, 81722031, Xiaogang Wang; 81670962, Zuolin Wang), Shanghai Health System (No. 2017 BR009, Yao Sun), Tongji University (Nos. TJ15042119036 and TJ2000219143, Zuolin Wang), and Chinese Universities Scientific Fund (No. kx0200020173386, Rui Yue). We would like to appreciate Dr. Chunlin Qin (College of Dentistry, Texas A&M University) for providing the DMP1-N antibody and assistance. We thank Qigang Wang Group, School of Chemical Science and Engineering, Tongji University for providing biomechanical testing machine. We would also like to thank Xiaojuan Yang, Gongchen Li, and Mengmeng Liu for their help in revising the paper.

Compliance with ethics guidelines

Hui Xue, Dike Tao, Yuteng Weng, Qiqi Fan, Shuang Zhou, Ruilin Zhang, Han Zhang, Rui Yue, Xiaogang Wang, Zuolin Wang, and Yao Sun declare no conflict of interest. All institutional and national guidelines for the care and use of laboratory animals were followed.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-019-0693-9 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2019 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
AI Summary AI Mindmap
PDF(12088 KB)

Accesses

Citations

Detail

Sections
Recommended

/