Stem cell niches and endogenous electric fields in tissue repair
Received date: 03 Dec 2010
Accepted date: 28 Dec 2010
Published date: 05 Mar 2011
Copyright
Adult stem cells are responsible for homeostasis and repair of many tissues. Endogenous adult stem cells reside in certain regions of organs, known as the stem cell niche, which is recognized to have an important role in regulating tissue maintenance and repair. In wound healing and tissue repair, stem cells are mobilized and recruited to the site of wound, and participate in the repair process. Many regulatory factors are involved in the stem cell-based repair process, including stem cell niches and endogenous wound electric fields, which are present at wound tissues and proved to be important in guiding wound healing. Here we briefly review the role of stem cell niches and endogenous electric fields in tissue repair, and hypothesize that endogenous electric fields become part of stem cell niche in the wound site.
Key words: stem cell; stem cell niche; electric field; tissue repair
Li LI , Jianxin JIANG . Stem cell niches and endogenous electric fields in tissue repair[J]. Frontiers of Medicine, 2011 , 5(1) : 40 -44 . DOI: 10.1007/s11684-011-0108-z
1 |
Doetsch F. A niche for adult neural stem cells. Curr Opin Genet Dev, 2003, 13(5): 543–550
|
2 |
Nuccitelli R. A role for endogenous electric fields in wound healing. Curr Top Dev Biol, 2003, 58: 1–26
|
3 |
Zhao M, Song B, Pu J, Wada T, Reid B, Tai G, Wang F, Guo A, Walczysko P, Gu Y, Sasaki T, Suzuki A, Forrester J V, Bourne H R, Devreotes P N, McCaig C D, Penninger J M. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature, 2006, 442(7101): 457–460
|
4 |
Scadden D T. The stem-cell niche as an entity of action. Nature, 2006, 441(7097): 1075–1079
|
5 |
Jones D L, Wagers A J. No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol, 2008, 9(1): 11–21
|
6 |
Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell, 2004, 116(6): 769–778
|
7 |
Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 1978, 4(1-2): 7–25
|
8 |
Nie D. Cancer stem cell and niche. Front Biosci (Schol Ed), 2010, 2(1): 184–193 (Schol Ed)
|
9 |
King F J, Lin H. Somatic signaling mediated by fs(1)Yb is essential for germline stem cell maintenance during Drosophila oogenesis. Development, 1999, 126(9): 1833–1844
|
10 |
Xie T, Spradling A C. A niche maintaining germ line stem cells in the Drosophila ovary. Science, 2000, 290(5490): 328–330
|
11 |
Tumbar T, Guasch G, Greco V, Blanpain C, Lowry W E, Rendl M, Fuchs E. Defining the epithelial stem cell niche in skin. Science, 2004, 303(5656): 359–363
|
12 |
Yen T H, Wright N A. The gastrointestinal tract stem cell niche. Stem Cell Rev, 2006, 2(3): 203–212
|
13 |
Conover J C, Notti R Q. The neural stem cell niche. Cell Tissue Res, 2008, 331(1): 211–224
|
14 |
Mitsiadis T A, Barrandon O, Rochat A, Barrandon Y, De Bari C. Stem cell niches in mammals. Exp Cell Res, 2007, 313(16): 3377–3385
|
15 |
Ohshima H, Nakasone N, Hashimoto E, Sakai H, Nakakura-Ohshima K, Harada H. The eternal tooth germ is formed at the apical end of continuously growing teeth. Arch Oral Biol, 2005, 50(2): 153–157
|
16 |
Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol, 2006, 6(2): 93–106
|
17 |
Mohyeldin A, Garzón-Muvdi T, Quiñones-Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell, 2010, 7(2): 150–161
|
18 |
Moore K A, Lemischka I R. Stem cells and their niches. Science, 2006, 311(5769): 1880–1885
|
19 |
Alonso L, Fuchs E. Stem cells of the skin epithelium. Proc Natl Acad Sci USA, 2003, 100(90001 Suppl 1): 11830–11835
|
20 |
Morris R J, Liu Y, Marles L, Yang Z, Trempus C, Li S, Lin J S, Sawicki J A, Cotsarelis G. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol, 2004, 22(4): 411–417
|
21 |
Morris R J, Potten C S. Slowly cycling (label-retaining) epidermal cells behave like clonogenic stem cells in vitro. Cell Prolif, 1994, 27(5): 279–289
|
22 |
Cotsarelis G, Sun T T, Lavker R M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell, 1990, 61(7): 1329–1337
|
23 |
Luo J, Daniels S B, Lennington J B, Notti R Q, Conover J C. The aging neurogenic subventricular zone. Aging Cell, 2006, 5(2): 139–152
|
24 |
Luskin M B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron, 1993, 11(1): 173–189
|
25 |
Menn B, Garcia-Verdugo J M, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A. Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci, 2006, 26(30): 7907–7918
|
26 |
Seri B, García-Verdugo J M, Collado-Morente L, McEwen B S, Alvarez-Buylla A. Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol, 2004, 478(4): 359–378
|
27 |
Park H C, Yasuda K, Kuo M C, Ni J, Ratliff B B, Chander P N, Goligorsky M S. Renal capsule as a stem cell niche. Am J Physiol Renal Physiol, 2010, 67(5): 1254–1262
|
28 |
Kim K, Lee K M, Han D J, Yu E, Cho Y M. Adult stem cell-like tubular cells reside in the corticomedullary junction of the kidney. Int J Clin Exp Pathol, 2008, 1(3): 232–241
|
29 |
Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins R W, Lecapitaine N, Cascapera S, Beltrami A P, D’Alessandro D A, Zias E, Quaini F, Urbanek K, Michler R E, Bolli R, Kajstura J, Leri A, Anversa P. Human cardiac stem cells. Proc Natl Acad Sci USA, 2007, 104(35): 14068–14073
|
30 |
Urbanek K, Cesselli D, Rota M, Nascimbene A, De Angelis A, Hosoda T, Bearzi C, Boni A, Bolli R, Kajstura J, Anversa P, Leri A. Stem cell niches in the adult mouse heart. Proc Natl Acad Sci USA, 2006, 103(24): 9226–9231
|
31 |
Zhang J, Niu C, Ye L, Huang H, He X, Tong W G, Ross J, Haug J, Johnson T, Feng J Q, Harris S, Wiedemann L M, Mishina Y, Li L. Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 2003, 425(6960): 836–841
|
32 |
Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh G Y, Suda T. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell, 2004, 118(2): 149–161
|
33 |
Kiel M J, Yilmaz O H, Iwashita T, Yilmaz O H, Terhorst C, Morrison S J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 2005, 121(7): 1109–1121
|
34 |
Kopp H G, Avecilla S T, Hooper A T, Rafii S. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda), 2005, 20(5): 349–356
|
35 |
Zhang J, Li L. Stem cell niche: microenvironment and beyond. J Biol Chem, 2008, 283(15): 9499–9503
|
36 |
Barker A T, Jaffe L F, Vanable J W Jr. The glabrous epidermis of cavies contains a powerful battery. Am J Physiol, 1982, 242(3): R358–R366
|
37 |
Candia O A. Electrolyte and fluid transport across corneal, conjunctival and lens epithelia. Exp Eye Res, 2004, 78(3): 527–535
|
38 |
Mukerjee E V, Isseroff R R, Nuccitelli R, Collins S D, Smith R L. Microneedle array for measuring wound generated electric fields. Conf Proc IEEE Eng Med Biol Soc, 2006, 1: 4326–4328
|
39 |
Nuccitelli R, Nuccitelli P, Ramlatchan S, Sanger R, Smith P J. Imaging the electric field associated with mouse and human skin wounds. Wound Repair Regen, 2008, 16(3): 432–441
|
40 |
McCaig C D, Rajnicek A M, Song B, Zhao M. Controlling cell behavior electrically: current views and future potential. Physiol Rev, 2005, 85(3): 943–978
|
41 |
Zhao M. Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol, 2009, 20(6): 674–682
|
42 |
Song B, Zhao M, Forrester J V, McCaig C D. Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc Natl Acad Sci USA, 2002, 99(21): 13577–13582
|
43 |
Arocena M, Zhao M, Collinson J M, Song B. A time-lapse and quantitative modelling analysis of neural stem cell motion in the absence of directional cues and in electric fields. J Neurosci Res, 2010, 88(15): 3267–3274
|
44 |
Ariza C A, Fleury A T, Tormos C J, Petruk V, Chawla S, Oh J, Sakaguchi D S, Mallapragada S K. The influence of electric fields on hippocampal neural progenitor cells. Stem Cell Rev, 2010, 6(4): 585–600
|
45 |
Hammerick K E, Longaker M T, Prinz F B. In vitro effects of direct current electric fields on adipose-derived stromal cells. Biochem Biophys Res Commun, 2010, 397(1): 12–17
|
46 |
Sun S, Titushkin I, Cho M. Regulation of mesenchymal stem cell adhesion and orientation in 3D collagen scaffold by electrical stimulus. Bioelectrochemistry, 2006, 69(2): 133–141
|
47 |
Tandon N, Goh B, Marsano A, Chao P H, Montouri-Sorrentino C, Gimble J, Vunjak-Novakovic G. Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation. Conf Proc IEEE Eng Med Biol Soc, 2009, 2009(1): 6517–6521
|
48 |
Serena E, Figallo E, Tandon N, Cannizzaro C, Gerecht S, Elvassore N, Vunjak-Novakovic G. Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Exp Cell Res, 2009, 315(20): 3611–3619
|
/
〈 | 〉 |