REVIEW

Stem cell niches and endogenous electric fields in tissue repair

  • Li LI ,
  • Jianxin JIANG
Expand
  • State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China

Received date: 03 Dec 2010

Accepted date: 28 Dec 2010

Published date: 05 Mar 2011

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Adult stem cells are responsible for homeostasis and repair of many tissues. Endogenous adult stem cells reside in certain regions of organs, known as the stem cell niche, which is recognized to have an important role in regulating tissue maintenance and repair. In wound healing and tissue repair, stem cells are mobilized and recruited to the site of wound, and participate in the repair process. Many regulatory factors are involved in the stem cell-based repair process, including stem cell niches and endogenous wound electric fields, which are present at wound tissues and proved to be important in guiding wound healing. Here we briefly review the role of stem cell niches and endogenous electric fields in tissue repair, and hypothesize that endogenous electric fields become part of stem cell niche in the wound site.

Cite this article

Li LI , Jianxin JIANG . Stem cell niches and endogenous electric fields in tissue repair[J]. Frontiers of Medicine, 2011 , 5(1) : 40 -44 . DOI: 10.1007/s11684-011-0108-z

Acknowledgements

We are very grateful to Professor Min Zhao (University of California, Davis) for his great help of critical reading of the manuscript. This work is supported by Key Program of National Nature Science Foundation of China (81030037) and Open fund of State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University (SKLZZ200804).
1
Doetsch F. A niche for adult neural stem cells. Curr Opin Genet Dev, 2003, 13(5): 543–550

DOI PMID

2
Nuccitelli R. A role for endogenous electric fields in wound healing. Curr Top Dev Biol, 2003, 58: 1–26

DOI PMID

3
Zhao M, Song B, Pu J, Wada T, Reid B, Tai G, Wang F, Guo A, Walczysko P, Gu Y, Sasaki T, Suzuki A, Forrester J V, Bourne H R, Devreotes P N, McCaig C D, Penninger J M. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature, 2006, 442(7101): 457–460

DOI PMID

4
Scadden D T. The stem-cell niche as an entity of action. Nature, 2006, 441(7097): 1075–1079

DOI PMID

5
Jones D L, Wagers A J. No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol, 2008, 9(1): 11–21

DOI PMID

6
Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell, 2004, 116(6): 769–778

DOI PMID

7
Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 1978, 4(1-2): 7–25

PMID

8
Nie D. Cancer stem cell and niche. Front Biosci (Schol Ed), 2010, 2(1): 184–193 (Schol Ed)

DOI PMID

9
King F J, Lin H. Somatic signaling mediated by fs(1)Yb is essential for germline stem cell maintenance during Drosophila oogenesis. Development, 1999, 126(9): 1833–1844

PMID

10
Xie T, Spradling A C. A niche maintaining germ line stem cells in the Drosophila ovary. Science, 2000, 290(5490): 328–330

DOI PMID

11
Tumbar T, Guasch G, Greco V, Blanpain C, Lowry W E, Rendl M, Fuchs E. Defining the epithelial stem cell niche in skin. Science, 2004, 303(5656): 359–363

DOI PMID

12
Yen T H, Wright N A. The gastrointestinal tract stem cell niche. Stem Cell Rev, 2006, 2(3): 203–212

DOI PMID

13
Conover J C, Notti R Q. The neural stem cell niche. Cell Tissue Res, 2008, 331(1): 211–224

DOI PMID

14
Mitsiadis T A, Barrandon O, Rochat A, Barrandon Y, De Bari C. Stem cell niches in mammals. Exp Cell Res, 2007, 313(16): 3377–3385

DOI PMID

15
Ohshima H, Nakasone N, Hashimoto E, Sakai H, Nakakura-Ohshima K, Harada H. The eternal tooth germ is formed at the apical end of continuously growing teeth. Arch Oral Biol, 2005, 50(2): 153–157

DOI PMID

16
Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol, 2006, 6(2): 93–106

DOI PMID

17
Mohyeldin A, Garzón-Muvdi T, Quiñones-Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell, 2010, 7(2): 150–161

DOI PMID

18
Moore K A, Lemischka I R. Stem cells and their niches. Science, 2006, 311(5769): 1880–1885

DOI PMID

19
Alonso L, Fuchs E. Stem cells of the skin epithelium. Proc Natl Acad Sci USA, 2003, 100(90001 Suppl 1): 11830–11835

DOI PMID

20
Morris R J, Liu Y, Marles L, Yang Z, Trempus C, Li S, Lin J S, Sawicki J A, Cotsarelis G. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol, 2004, 22(4): 411–417

DOI PMID

21
Morris R J, Potten C S. Slowly cycling (label-retaining) epidermal cells behave like clonogenic stem cells in vitro. Cell Prolif, 1994, 27(5): 279–289

DOI PMID

22
Cotsarelis G, Sun T T, Lavker R M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell, 1990, 61(7): 1329–1337

DOI PMID

23
Luo J, Daniels S B, Lennington J B, Notti R Q, Conover J C. The aging neurogenic subventricular zone. Aging Cell, 2006, 5(2): 139–152

DOI PMID

24
Luskin M B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron, 1993, 11(1): 173–189

DOI PMID

25
Menn B, Garcia-Verdugo J M, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A. Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci, 2006, 26(30): 7907–7918

DOI PMID

26
Seri B, García-Verdugo J M, Collado-Morente L, McEwen B S, Alvarez-Buylla A. Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol, 2004, 478(4): 359–378

DOI PMID

27
Park H C, Yasuda K, Kuo M C, Ni J, Ratliff B B, Chander P N, Goligorsky M S. Renal capsule as a stem cell niche. Am J Physiol Renal Physiol, 2010, 67(5): 1254–1262

DOI PMID

28
Kim K, Lee K M, Han D J, Yu E, Cho Y M. Adult stem cell-like tubular cells reside in the corticomedullary junction of the kidney. Int J Clin Exp Pathol, 2008, 1(3): 232–241

PMID

29
Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins R W, Lecapitaine N, Cascapera S, Beltrami A P, D’Alessandro D A, Zias E, Quaini F, Urbanek K, Michler R E, Bolli R, Kajstura J, Leri A, Anversa P. Human cardiac stem cells. Proc Natl Acad Sci USA, 2007, 104(35): 14068–14073

DOI PMID

30
Urbanek K, Cesselli D, Rota M, Nascimbene A, De Angelis A, Hosoda T, Bearzi C, Boni A, Bolli R, Kajstura J, Anversa P, Leri A. Stem cell niches in the adult mouse heart. Proc Natl Acad Sci USA, 2006, 103(24): 9226–9231

DOI PMID

31
Zhang J, Niu C, Ye L, Huang H, He X, Tong W G, Ross J, Haug J, Johnson T, Feng J Q, Harris S, Wiedemann L M, Mishina Y, Li L. Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 2003, 425(6960): 836–841

DOI PMID

32
Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh G Y, Suda T. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell, 2004, 118(2): 149–161

DOI PMID

33
Kiel M J, Yilmaz O H, Iwashita T, Yilmaz O H, Terhorst C, Morrison S J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell, 2005, 121(7): 1109–1121

DOI PMID

34
Kopp H G, Avecilla S T, Hooper A T, Rafii S. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda), 2005, 20(5): 349–356

DOI PMID

35
Zhang J, Li L. Stem cell niche: microenvironment and beyond. J Biol Chem, 2008, 283(15): 9499–9503

DOI PMID

36
Barker A T, Jaffe L F, Vanable J W Jr. The glabrous epidermis of cavies contains a powerful battery. Am J Physiol, 1982, 242(3): R358–R366

PMID

37
Candia O A. Electrolyte and fluid transport across corneal, conjunctival and lens epithelia. Exp Eye Res, 2004, 78(3): 527–535

DOI PMID

38
Mukerjee E V, Isseroff R R, Nuccitelli R, Collins S D, Smith R L. Microneedle array for measuring wound generated electric fields. Conf Proc IEEE Eng Med Biol Soc, 2006, 1: 4326–4328

DOI PMID

39
Nuccitelli R, Nuccitelli P, Ramlatchan S, Sanger R, Smith P J. Imaging the electric field associated with mouse and human skin wounds. Wound Repair Regen, 2008, 16(3): 432–441

DOI PMID

40
McCaig C D, Rajnicek A M, Song B, Zhao M. Controlling cell behavior electrically: current views and future potential. Physiol Rev, 2005, 85(3): 943–978

DOI PMID

41
Zhao M. Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol, 2009, 20(6): 674–682

DOI PMID

42
Song B, Zhao M, Forrester J V, McCaig C D. Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc Natl Acad Sci USA, 2002, 99(21): 13577–13582

DOI PMID

43
Arocena M, Zhao M, Collinson J M, Song B. A time-lapse and quantitative modelling analysis of neural stem cell motion in the absence of directional cues and in electric fields. J Neurosci Res, 2010, 88(15): 3267–3274

DOI PMID

44
Ariza C A, Fleury A T, Tormos C J, Petruk V, Chawla S, Oh J, Sakaguchi D S, Mallapragada S K. The influence of electric fields on hippocampal neural progenitor cells. Stem Cell Rev, 2010, 6(4): 585–600

DOI PMID

45
Hammerick K E, Longaker M T, Prinz F B. In vitro effects of direct current electric fields on adipose-derived stromal cells. Biochem Biophys Res Commun, 2010, 397(1): 12–17

DOI PMID

46
Sun S, Titushkin I, Cho M. Regulation of mesenchymal stem cell adhesion and orientation in 3D collagen scaffold by electrical stimulus. Bioelectrochemistry, 2006, 69(2): 133–141

DOI PMID

47
Tandon N, Goh B, Marsano A, Chao P H, Montouri-Sorrentino C, Gimble J, Vunjak-Novakovic G. Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation. Conf Proc IEEE Eng Med Biol Soc, 2009, 2009(1): 6517–6521

PMID

48
Serena E, Figallo E, Tandon N, Cannizzaro C, Gerecht S, Elvassore N, Vunjak-Novakovic G. Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Exp Cell Res, 2009, 315(20): 3611–3619

DOI PMID

Outlines

/