Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms
Received date: 03 Dec 2010
Accepted date: 10 Jan 2011
Published date: 05 Mar 2011
Copyright
Adult stem cells hold great promise for wound healing and tissue regeneration. Mesenchymal stem cells (MSCs), for example, have been shown to play a role in tissue repair. Research has shown that endogenous bone marrow MSCs or exogenously delivered MSCs migrate to the sites of injury and participate in the repair process. The precise mechanisms underlying migration of MSCs into the injured tissue are still not fully understood, although multiple signaling pathways and molecules were reported, including both chemoattractive factors and endogenous electric fields at wounds. This review will briefly summarize the regulatory facors and signaling transduction pathways involved in migration of MSCs. A better understanding of the molecular mechanisms involved in the migration of MSCs will help us to develop new stem cell-based therapeutic strategies in regenerative medicine.
Key words: mesenchymal stem cells; migration; molecular mechanisms; signaling pathway
Li LI , Jianxin JIANG . Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms[J]. Frontiers of Medicine, 2011 , 5(1) : 33 -39 . DOI: 10.1007/s11684-011-0114-1
1 |
Friedenstein A J, Chailakhyan R K, Latsinik N V, Panasyuk A F, Keiliss-Borok I V. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation, 1974, 17(4): 331–340
|
2 |
Ortiz L A, Dutreil M, Fattman C, Pandey A C, Torres G, Go K, Phinney D G. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci USA, 2007, 104(26): 11002–11007
|
3 |
Ohnishi S, Yanagawa B, Tanaka K, Miyahara Y, Obata H, Kataoka M, Kodama M, Ishibashi-Ueda H, Kangawa K, Kitamura S, Nagaya N. Transplantation of mesenchymal stem cells attenuates myocardial injury and dysfunction in a rat model of acute myocarditis. J Mol Cell Cardiol, 2007, 42(1): 88–97
|
4 |
Shake J G, Gruber P J, Baumgartner W A, Senechal G, Meyers J, Redmond J M, Pittenger M F, Martin B J. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg. 2002; 73(6): 1919–1926
|
5 |
Zohlnhöfer D, Dibra A, Koppara T, de Waha A, Ripa R S, Kastrup J, Valgimigli M, Schömig A, Kastrati A. Stem cell mobilization by granulocyte colony-stimulating factor for myocardial recovery after acute myocardial infarction: a meta-analysis. J Am Coll Cardiol, 2008, 51(15): 1429–1437
|
6 |
Patschan D, Plotkin M, Goligorsky M S. Therapeutic use of stem and endothelial progenitor cells in acute renal injury: ça ira. Curr Opin Pharmacol, 2006, 6(2): 176–183
|
7 |
Liang L, Ma T, Chen W, Hu J, Bai X, Li J, Liang T. Therapeutic potential and related signal pathway of adipose-derived stem cell transplantation for rat liver injury. Hepatol Res, 2009, 39(8): 822–832
|
8 |
Németh K, Leelahavanichkul A, Yuen P S, Mayer B, Parmelee A, Doi K, Robey P G, Leelahavanichkul K, Koller B H, Brown J M, Hu X, Jelinek I, Star R A, Mezey E. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med, 2009, 15(1): 42–49
|
9 |
Chapel A, Bertho J M, Bensidhoum M, Fouillard L, Young R G, Frick J, Demarquay C, Cuvelier F, Mathieu E, Trompier F, Dudoignon N, Germain C, Mazurier C, Aigueperse J, Borneman J, Gorin N C, Gourmelon P, Thierry D. Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome. J Gene Med, 2003, 5(12): 1028–1038
|
10 |
Ortiz L A, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney D G. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA, 2003, 100(14): 8407–8411
|
11 |
Moser B, Willimann K. Chemokines: role in inflammation and immune surveillance. Ann Rheum Dis, 2004, 63 (Suppl 2): ii84–ii89
|
12 |
Li Y, Yu X, Lin S, Li X, Zhang S, Song Y H. Insulin-like growth factor 1 enhances the migratory capacity of mesenchymal stem cells. Biochem Biophys Res Commun, 2007, 356(3): 780–784
|
13 |
Ji J F, He B P, Dheen S T, Tay S S. Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells, 2004, 22(3): 415–427
|
14 |
Ryu C H, Park S A, Kim S M, Lim J Y, Jeong C H, Jun J A, Oh J H, Park S H, Oh W I, Jeun S S. Migration of human umbilical cord blood mesenchymal stem cells mediated by stromal cell-derived factor-1/CXCR4 axis via Akt, ERK, and p38 signal transduction pathways. Biochem Biophys Res Commun, 2010, 398(1): 105–110
|
15 |
Wynn R F, Hart C A, Corradi-Perini C, O’Neill L, Evans C A, Wraith J E, Fairbairn L J, Bellantuono I. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow. Blood, 2004, 104(9): 2643–2645
|
16 |
Son B R, Marquez-Curtis L A, Kucia M, Wysoczynski M, Turner A R, Ratajczak J, Ratajczak M Z, Janowska-Wieczorek A. Migration of bone marrow and cord blood mesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4 and hepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells, 2006, 24(5): 1254–1264
|
17 |
Tsai L K, Leng Y, Wang Z, Leeds P, Chuang D M. The mood stabilizers valproic acid and lithium enhance mesenchymal stem cell migration via distinct mechanisms. Neuropsychopharmacology, 2010, 35(11): 2225–2237
|
18 |
Ip J E, Wu Y, Huang J, Zhang L, Pratt R E, Dzau V J. Mesenchymal stem cells use integrin beta1 not CXC chemokine receptor 4 for myocardial migration and engraftment. Mol Biol Cell, 2007, 18(8): 2873–2882
|
19 |
Sordi V, Malosio M L, Marchesi F, Mercalli A, Melzi R, Giordano T, Belmonte N, Ferrari G, Leone B E, Bertuzzi F, Zerbini G, Allavena P, Bonifacio E, Piemonti L. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood, 2005, 106(2): 419–427
|
20 |
Phinney D G, Prockop D J. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair—current views. Stem Cells, 2007, 25(11): 2896–2902
|
21 |
Rüster B, Göttig S, Ludwig R J, Bistrian R, Müller S, Seifried E, Gille J, Henschler R. Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood, 2006, 108(12): 3938–3944
|
22 |
Sackstein R, Merzaban J S, Cain D W, Dagia N M, Spencer J A, Lin C P, Wohlgemuth R. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med, 2008, 14(2): 181–187
|
23 |
Jeon E S, Song H Y, Kim M R, Moon H J, Bae Y C, Jung J S, Kim J H. Sphingosylphosphorylcholine induces proliferation of human adipose tissue-derived mesenchymal stem cells via activation of JNK. J Lipid Res, 2006, 47(3): 653–664
|
24 |
Song H Y, Lee M J, Kim M Y, Kim K H, Lee I H, Shin S H, Lee J S, Kim J H. Lysophosphatidic acid mediates migration of human mesenchymal stem cells stimulated by synovial fluid of patients with rheumatoid arthritis. Biochim Biophys Acta, 2010, 1801(1): 23–30
|
25 |
Song H Y, Lee M J, Kim M Y, Kim K H, Lee I H, Shin S H, Lee J S, Kim J H. Lysophosphatidic acid mediates migration of human mesenchymal stem cells stimulated by synovial fluid of patients with rheumatoid arthritis. Biochim Biophys Acta, 2010, 1801(1): 23–30
|
26 |
Jaganathan B G, Ruester B, Dressel L, Stein S, Grez M, Seifried E, Henschler R. Rho inhibition induces migration of mesenchymal stromal cells. Stem Cells, 2007, 25(8): 1966–1974
|
27 |
Fu X, Han B, Cai S, Lei Y, Sun T, Sheng Z. Migration of bone marrow-derived mesenchymal stem cells induced by tumor necrosis factor-alpha and its possible role in wound healing. Wound Repair Regen, 2009, 17(2): 185–191
|
28 |
Hemeda H, Jakob M, Ludwig A K, Giebel B, Lang S, Brandau S. Interferon-gamma and tumor necrosis factor-alpha differentially affect cytokine expression and migration properties of mesenchymal stem cells. Stem Cells Dev, 2010, 19(5): 693–706
|
29 |
Zhang A, Wang Y, Ye Z, Xie H, Zhou L, Zheng S. Mechanism of TNF-α-induced migration and hepatocyte growth factor production in human mesenchymal stem cells. J Cell Biochem, 2010, 111(2): 469–475
|
30 |
Fischer-Valuck B W, Barrilleaux B L, Phinney D G, Russell K C, Prockop D J, O’Connor K C. Migratory response of mesenchymal stem cells to macrophage migration inhibitory factor and its antagonist as a function of colony-forming efficiency. Biotechnol Lett, 2010, 32(1): 19–27
|
31 |
Meng E, Guo Z, Wang H, Jin J, Wang J, Wang H, Wu C, Wang L. High mobility group box 1 protein inhibits the proliferation of human mesenchymal stem cells and promotes their migration and differentiation along osteoblastic pathway. Stem Cells Dev, 2008, 17(4): 805–813
|
32 |
Wang L, Li Y, Chen X, Chen J, Gautam S C, Xu Y, Chopp M. MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology, 2002, 7(2): 113–117
|
33 |
Wang L, Li Y, Chen J, Gautam S C, Zhang Z, Lu M, Chopp M. Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture. Exp Hematol, 2002, 30(7): 831–836
|
34 |
Dwyer R M, Potter-Beirne S M, Harrington K A, Lowery A J, Hennessy E, Murphy J M, Barry F P, O’Brien T, Kerin M J. Monocyte chemotactic protein-1 secreted by primary breast tumors stimulates migration of mesenchymal stem cells. Clin Cancer Res, 2007, 13(17): 5020–5027
|
35 |
Xu F, Shi J, Yu B, Ni W, Wu X, Gu Z. Chemokines mediate mesenchymal stem cell migration toward gliomas in vitro. Oncol Rep, 2010, 23(6): 1561–1567
|
36 |
Picinich S C, Glod J W, Banerjee D. Protein kinase C zeta regulates interleukin-8-mediated stromal-derived factor-1 expression and migration of human mesenchymal stromal cells. Exp Cell Res, 2010, 316(4): 593–602
|
37 |
Ponte A L, Marais E, Gallay N, Langonné A, Delorme B, Hérault O, Charbord P, Domenech J. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells, 2007, 25(7): 1737–1745
|
38 |
Forte G, Minieri M, Cossa P, Antenucci D, Sala M, Gnocchi V, Fiaccavento R, Carotenuto F, De Vito P, Baldini P M, Prat M, Di Nardo P. Hepatocyte growth factor effects on mesenchymal stem cells: proliferation, migration, and differentiation. Stem Cells, 2006, 24(1): 23–33
|
39 |
Fiedler J, Röderer G, Günther K P, Brenner R E. BMP-2, BMP-4, and PDGF-bb stimulate chemotactic migration of primary human mesenchymal progenitor cells. J Cell Biochem, 2002, 87(3): 305–312
|
40 |
Fiedler J, Brill C, Blum W F, Brenner R E. IGF-I and IGF-II stimulate directed cell migration of bone-marrow-derived human mesenchymal progenitor cells. Biochem Biophys Res Commun, 2006, 345(3): 1177–1183
|
41 |
Tamama K, Fan V H, Griffith L G, Blair H C, Wells A. Epidermal growth factor as a candidate for ex vivo expansion of bone marrow-derived mesenchymal stem cells. Stem Cells, 2006, 24(3): 686–695
|
42 |
Kollet O, Shivtiel S, Chen Y Q, Suriawinata J, Thung S N, Dabeva M D, Kahn J, Spiegel A, Dar A, Samira S, Goichberg P, Kalinkovich A, Arenzana-Seisdedos F, Nagler A, Hardan I, Revel M, Shafritz D A, Lapidot T. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest, 2003, 112(2): 160–169
|
43 |
Jankowski K, Kucia M, Wysoczynski M, Reca R, Zhao D, Trzyna E, Trent J, Peiper S, Zembala M, Ratajczak J, Houghton P, Janowska-Wieczorek A, Ratajczak M Z. Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Res, 2003, 63(22): 7926–7935
|
44 |
Demetri G D, Griffin J D. Granulocyte colony-stimulating factor and its receptor. Blood, 1991, 78(11): 2791–2808
|
45 |
Yanqing Z, Yu-Min L, Jian Q, Bao-Guo X, Chuan-Zhen L. Fibronectin and neuroprotective effect of granulocyte colony-stimulating factor in focal cerebral ischemia. Brain Res, 2006, 1098(1): 161–169
|
46 |
Shyu W C, Lin S Z, Yang H I, Tzeng Y S, Pang C Y, Yen P S, Li H. Functional recovery of stroke rats induced by granulocyte colony-stimulating factor-stimulated stem cells. Circulation, 2004, 110(13): 1847–1854
|
47 |
Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine D M, Leri A, Anversa P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci USA, 2001, 98(18): 10344–10349
|
48 |
Watari K, Asano S, Shirafuji N, Kodo H, Ozawa K, Takaku F, Kamachi S. Serum granulocyte colony-stimulating factor levels in healthy volunteers and patients with various disorders as estimated by enzyme immunoassay. Blood, 1989, 73(1): 117–122
|
49 |
Zhao M, Song B, Pu J, Wada T, Reid B, Tai G, Wang F, Guo A, Walczysko P, Gu Y, Sasaki T, Suzuki A, Forrester J V, Bourne H R, Devreotes P N, McCaig C D, Penninger J M. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature, 2006, 442(7101): 457–460
|
50 |
Zhao M. Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol, 2009, 20(6): 674–682
|
51 |
Nuccitelli R. A role for endogenous electric fields in wound healing. Curr Top Dev Biol, 2003, 58: 1–26
|
52 |
Reid B, Song B, McCaig C D, Zhao M. Wound healing in rat cornea: the role of electric currents. FASEB J, 2005, 19(3): 379–386
|
53 |
Song B, Zhao M, Forrester J V, McCaig C D. Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc Natl Acad Sci USA, 2002, 99(21): 13577–13582
|
54 |
Hammerick K E, Longaker M T, Prinz F B. In vitro effects of direct current electric fields on adipose-derived stromal cells. Biochem Biophys Res Commun, 2010, 397(1): 12–17
|
55 |
Sun S, Titushkin I, Cho M. Regulation of mesenchymal stem cell adhesion and orientation in 3D collagen scaffold by electrical stimulus. Bioelectrochemistry, 2006, 69(2): 133–141
|
56 |
Tandon N, Goh B, Marsano A, Chao PH, Montouri-Sorrentino C, Gimble J, Vunjak-Novakovic G. Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation. Conf Proc IEEE Eng Med Biol Soc. 2009; 2009: 6517–6521.
|
57 |
Zhao M. Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol, 2009, 20(6): 674–682
|
58 |
Zha Y H, He J F, Mei Y W, Yin T, Mao L. Zinc-finger transcription factor snail accelerates survival, migration and expression of matrix metalloproteinase-2 in human bone mesenchymal stem cells. Cell Biol Int, 2007, 31(10): 1089–1096
|
59 |
Schmidt A, Ladage D, Schinköthe T, Klausmann U, Ulrichs C, Klinz F J, Brixius K, Arnhold S, Desai B, Mehlhorn U, Schwinger R H, Staib P, Addicks K, Bloch W. Basic fibroblast growth factor controls migration in human mesenchymal stem cells. Stem Cells, 2006, 24(7): 1750–1758
|
60 |
Zhao M, Agius-Fernandez A, Forrester J V, McCaig C D. Directed migration of corneal epithelial sheets in physiological electric fields. Invest Ophthalmol Vis Sci, 1996, 37(13): 2548–2558
|
61 |
Farboud B, Nuccitelli R, Schwab I R, Isseroff R R. DC electric fields induce rapid directional migration in cultured human corneal epithelial cells. Exp Eye Res, 2000, 70(5): 667–673
|
62 |
Wang E, Zhao M, Forrester J V, MCCaig C D. Re-orientation and faster, directed migration of lens epithelial cells in a physiological electric field. Exp Eye Res, 2000, 71(1): 91–98
|
63 |
Pu J, McCaig C D, Cao L, Zhao Z, Segall J E, Zhao M. EGF receptor signalling is essential for electric-field-directed migration of breast cancer cells. J Cell Sci, 2007, 120(Pt 19): 3395–3403
|
64 |
Yun D H, Song H Y, Lee M J, Kim M R, Kim M Y, Lee J S, Kim J H. Thromboxane A(2) modulates migration, proliferation, and differentiation of adipose tissue-derived mesenchymal stem cells. Exp Mol Med, 2009, 41(1): 17–24
|
65 |
Li S, Deng Y, Feng J, Ye W. Oxidative preconditioning promotes bone marrow mesenchymal stem cells migration and prevents apoptosis. Cell Biol Int, 2009, 33(3): 411–418
|
66 |
Kang Y J, Jeon E S, Song H Y, Woo J S, Jung J S, Kim Y K, Kim J H. Role of c-Jun N-terminal kinase in the PDGF-induced proliferation and migration of human adipose tissue-derived mesenchymal stem cells. J Cell Biochem, 2005, 95(6): 1135–1145
|
67 |
Gu Y, Filippi M D, Cancelas J A, Siefring J E, Williams E P, Jasti A C, Harris C E, Lee A W, Prabhakar R, Atkinson S J, Kwiatkowski D J, Williams D A. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science, 2003, 302(5644): 445–449
|
68 |
Lee M J, Jeon E S, Lee J S, Cho M, Suh D S, Chang C L, Kim J H. Lysophosphatidic acid in malignant ascites stimulates migration of human mesenchymal stem cells. J Cell Biochem, 2008, 104(2): 499–510
|
69 |
Pinto D, Clevers H. Wnt, stem cells and cancer in the intestine. Biol Cell, 2005, 97(3): 185–196
|
70 |
Qiang Y W, Walsh K, Yao L, Kedei N, Blumberg P M, Rubin J S, Shaughnessy J Jr, Rudikoff S. Wnts induce migration and invasion of myeloma plasma cells. Blood, 2005, 106(5): 1786–1793
|
71 |
Shang Y C, Wang S H, Xiong F, Zhao C P, Peng F N, Feng S W, Li M S, Li Y, Zhang C. Wnt3a signaling promotes proliferation, myogenic differentiation, and migration of rat bone marrow mesenchymal stem cells. Acta Pharmacol Sin, 2007, 28(11): 1761–1774
|
72 |
Karp J M, Leng Teo G S. Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell, 2009, 4(3): 206–216
|
73 |
Barrilleaux B L, Fischer-Valuck B W, Gilliam J K, Phinney D G, O’Connor K C. Activation of CD74 inhibits migration of human mesenchymal stem cells.In Vitro Cell Dev Biol Anim, 2010, 46(6): 566–572
|
74 |
De Becker A, Van Hummelen P, Bakkus M, Vande Broek I, De Wever J, De Waele M, Van Riet I. Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. Haematologica, 2007, 92(4): 440–449
|
75 |
Rombouts W J, Ploemacher R E. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia, 2003, 17(1): 160–170
|
/
〈 | 〉 |