Machine learning modeling identifies hypertrophic cardiomyopathy subtypes with genetic signature

Jiaqi Dai, Tao Wang, Ke Xu, Yang Sun, Zongzhe Li, Peng Chen, Hong Wang, Dongyang Wu, Yanghui Chen, Lei Xiao, Hao Liu, Haoran Wei, Rui Li, Liyuan Peng, Ting Yu, Yan Wang, Zhongsheng Sun, Dao Wen Wang

PDF(4006 KB)
PDF(4006 KB)
Front. Med. ›› 2023, Vol. 17 ›› Issue (4) : 768-780. DOI: 10.1007/s11684-023-0982-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Machine learning modeling identifies hypertrophic cardiomyopathy subtypes with genetic signature

Author information +
History +

Abstract

Previous studies have revealed that patients with hypertrophic cardiomyopathy (HCM) exhibit differences in symptom severity and prognosis, indicating potential HCM subtypes among these patients. Here, 793 patients with HCM were recruited at an average follow-up of 32.78 ± 27.58 months to identify potential HCM subtypes by performing consensus clustering on the basis of their echocardiography features. Furthermore, we proposed a systematic method for illustrating the relationship between the phenotype and genotype of each HCM subtype by using machine learning modeling and interactome network detection techniques based on whole-exome sequencing data. Another independent cohort that consisted of 414 patients with HCM was recruited to replicate the findings. Consequently, two subtypes characterized by different clinical outcomes were identified in HCM. Patients with subtype 2 presented asymmetric septal hypertrophy associated with a stable course, while those with subtype 1 displayed left ventricular systolic dysfunction and aggressive progression. Machine learning modeling based on personal whole-exome data identified 46 genes with mutation burden that could accurately predict subtype propensities. Furthermore, the patients in another cohort predicted as subtype 1 by the 46-gene model presented increased left ventricular end-diastolic diameter and reduced left ventricular ejection fraction. By employing echocardiography and genetic screening for the 46 genes, HCM can be classified into two subtypes with distinct clinical outcomes.

Keywords

machine learning methods / hypertrophic cardiomyopathy / genetic risk

Cite this article

Download citation ▾
Jiaqi Dai, Tao Wang, Ke Xu, Yang Sun, Zongzhe Li, Peng Chen, Hong Wang, Dongyang Wu, Yanghui Chen, Lei Xiao, Hao Liu, Haoran Wei, Rui Li, Liyuan Peng, Ting Yu, Yan Wang, Zhongsheng Sun, Dao Wen Wang. Machine learning modeling identifies hypertrophic cardiomyopathy subtypes with genetic signature. Front. Med., 2023, 17(4): 768‒780 https://doi.org/10.1007/s11684-023-0982-1

References

[1]
Maron BJ, Mathenge R, Casey SA, Poliac LC, Longe TF. Clinical profile of hypertrophic cardiomyopathy identified de novo in rural communities. J Am Coll Cardiol 1999; 33(6): 1590–1595
CrossRef Pubmed Google scholar
[2]
Zou Y, Song L, Wang Z, Ma A, Liu T, Gu H, Lu S, Wu P, Zhang dagger Y, Shen dagger L, Cai Y, Zhen double dagger Y, Liu Y, Hui R. Prevalence of idiopathic hypertrophic cardiomyopathy in China: a population-based echocardiographic analysis of 8080 adults. Am J Med 2004; 116(1): 14–18
CrossRef Pubmed Google scholar
[3]
Eriksson MJ, Sonnenberg B, Woo A, Rakowski P, Parker TG, Wigle ED, Rakowski H. Long-term outcome in patients with apical hypertrophic cardiomyopathy. J Am Coll Cardiol 2002; 39(4): 638–645
CrossRef Pubmed Google scholar
[4]
Maron BJ, Rowin EJ, Casey SA, Link MS, Lesser JR, Chan RH, Garberich RF, Udelson JE, Maron MS. Hypertrophic cardiomyopathy in adulthood associated with low cardiovascular mortality with contemporary management strategies. J Am Coll Cardiol 2015; 65(18): 1915–1928
CrossRef Pubmed Google scholar
[5]
Olivotto I, Cecchi F, Poggesi C, Yacoub MH. Patterns of disease progression in hypertrophic cardiomyopathy: an individualized approach to clinical staging. Circ Heart Fail 2012; 5(4): 535–546
CrossRef Pubmed Google scholar
[6]
Harris KM, Spirito P, Maron MS, Zenovich AG, Formisano F, Lesser JR, Mackey-Bojack S, Manning WJ, Udelson JE, Maron BJ. Prevalence, clinical profile, and significance of left ventricular remodeling in the end-stage phase of hypertrophic cardiomyopathy. Circulation 2006; 114(3): 216–225
CrossRef Pubmed Google scholar
[7]
Melacini P, Basso C, Angelini A, Calore C, Bobbo F, Tokajuk B, Bellini N, Smaniotto G, Zucchetto M, Iliceto S, Thiene G, Maron BJ. Clinicopathological profiles of progressive heart failure in hypertrophic cardiomyopathy. Eur Heart J 2010; 31(17): 2111–2123
CrossRef Pubmed Google scholar
[8]
Watkins H, McKenna WJ, Thierfelder L, Suk HJ, Anan R, O’Donoghue A, Spirito P, Matsumori A, Moravec CS, Seidman JG, Seidman CE. Mutations in the genes for cardiac troponin T and α-tropomyosin in hypertrophic cardiomyopathy. N Engl J Med 1995; 332(16): 1058–1065
CrossRef Pubmed Google scholar
[9]
Coppini R, Ho CY, Ashley E, Day S, Ferrantini C, Girolami F, Tomberli B, Bardi S, Torricelli F, Cecchi F, Mugelli A, Poggesi C, Tardiff J, Olivotto I. Clinical phenotype and outcome of hypertrophic cardiomyopathy associated with thin-filament gene mutations. J Am Coll Cardiol 2014; 64(24): 2589–2600
CrossRef Pubmed Google scholar
[10]
Harper AR, Goel A, Grace C, Thomson KL, Petersen SE, Xu X, Waring A, Ormondroyd E, Kramer CM, Ho CY, Neubauer S; HCMR Investigators; Tadros R, Ware JS, Bezzina CR, Farrall M, Watkins H. Common genetic variants and modifiable risk factors underpin hypertrophic cardiomyopathy susceptibility and expressivity. Nat Genet 2021; 53(2): 135–142
CrossRef Pubmed Google scholar
[11]
Ommen SR, Mital S, Burke MA, Day SM, Deswal A, Elliott P, Evanovich LL, Hung J, Joglar JA, Kantor P, Kimmelstiel C, Kittleson M, Link MS, Maron MS, Martinez MW, Miyake CY, Schaff HV, Semsarian C, Sorajja P. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation 2020; 142(25): e558–e631
Pubmed
[12]
Dai J, Li Z, Huang W, Chen P, Sun Y, Wang H, Wu D, Chen Y, Li C, Xiao L, Liu H, Wei H, Li R, Duan Q, Peng L, Song X, Yu T, Wang Y, Wang DW. Rbm20 is a candidate gene for hypertrophic cardiomyopathy. Can J Cardiol 2021; 37(11): 1751–1759
CrossRef Pubmed Google scholar
[13]
Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking. Bioinformatics 2010; 26(12): 1572–1573
CrossRef Pubmed Google scholar
[14]
Ingles J, Goldstein J, Thaxton C, Caleshu C, Corty EW, Crowley SB, Dougherty K, Harrison SM, McGlaughon J, Milko LV, Morales A, Seifert BA, Strande N, Thomson K, Peter van Tintelen J, Wallace K, Walsh R, Wells Q, Whiffin N, Witkowski L, Semsarian C, Ware JS, Hershberger RE, Funke B. Evaluating the clinical validity of hypertrophic cardiomyopathy genes. Circ Genom Precis Med 2019; 12(2): e002460
CrossRef Pubmed Google scholar
[15]
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17(5): 405–424
CrossRef Pubmed Google scholar
[16]
Li J, Zhao T, Zhang Y, Zhang K, Shi L, Chen Y, Wang X, Sun Z. Performance evaluation of pathogenicity-computation methods for missense variants. Nucleic Acids Res 2018; 46(15): 7793–7804
CrossRef Pubmed Google scholar
[17]
Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res 2019; 47(W1): W234–W241
CrossRef Pubmed Google scholar
[18]
Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma’ayan A. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 2016; 44(W1): W90–W97
CrossRef Pubmed Google scholar
[19]
Maron BA, Wang RS, Shevtsov S, Drakos SG, Arons E, Wever-Pinzon O, Huggins GS, Samokhin AO, Oldham WM, Aguib Y, Yacoub MH, Rowin EJ, Maron BJ, Maron MS, Loscalzo J. Individualized interactomes for network-based precision medicine in hypertrophic cardiomyopathy with implications for other clinical pathophenotypes. Nat Commun 2021; 12(1): 873
CrossRef Pubmed Google scholar
[20]
Geske JB, Ong KC, Siontis KC, Hebl VB, Ackerman MJ, Hodge DO, Miller VM, Nishimura RA, Oh JK, Schaff HV, Gersh BJ, Ommen SR. Women with hypertrophic cardiomyopathy have worse survival. Eur Heart J 2017; 38(46): 3434–3440
CrossRef Pubmed Google scholar
[21]
Rhee EP, Yang Q, Yu B, Liu X, Cheng S, Deik A, Pierce KA, Bullock K, Ho JE, Levy D, Florez JC, Kathiresan S, Larson MG, Vasan RS, Clish CB, Wang TJ, Boerwinkle E, O’Donnell CJ, Gerszten RE. An exome array study of the plasma metabolome. Nat Commun 2016; 7(1): 12360
CrossRef Pubmed Google scholar
[22]
Wessel J, Chu AY, Willems SM, Wang S, Yaghootkar H, Brody JA, Dauriz M, Hivert MF, Raghavan S, Lipovich L, Hidalgo B, Fox K, Huffman JE, An P, Lu Y, Rasmussen-Torvik LJ, Grarup N, Ehm MG, Li L, Baldridge AS, Stančáková A, Abrol R, Besse C, Boland A, Bork-Jensen J, Fornage M, Freitag DF, Garcia ME, Guo X, Hara K, Isaacs A, Jakobsdottir J, Lange LA, Layton JC, Li M, Hua Zhao J, Meidtner K, Morrison AC, Nalls MA, Peters MJ, Sabater-Lleal M, Schurmann C, Silveira A, Smith AV, Southam L, Stoiber MH, Strawbridge RJ, Taylor KD, Varga TV, Allin KH, Amin N, Aponte JL, Aung T, Barbieri C, Bihlmeyer NA, Boehnke M, Bombieri C, Bowden DW, Burns SM, Chen Y, Chen YD, Cheng CY, Correa A, Czajkowski J, Dehghan A, Ehret GB, Eiriksdottir G, Escher SA, Farmaki AE, Frånberg M, Gambaro G, Giulianini F, Goddard WA 3rd, Goel A, Gottesman O, Grove ML, Gustafsson S, Hai Y, Hallmans G, Heo J, Hoffmann P, Ikram MK, Jensen RA, Jørgensen ME, Jørgensen T, Karaleftheri M, Khor CC, Kirkpatrick A, Kraja AT, Kuusisto J, Lange EM, Lee IT, Lee WJ, Leong A, Liao J, Liu C, Liu Y, Lindgren CM, Linneberg A, Malerba G, Mamakou V, Marouli E, Maruthur NM, Matchan A, McKean-Cowdin R, McLeod O, Metcalf GA, Mohlke KL, Muzny DM, Ntalla I, Palmer ND, Pasko D, Peter A, Rayner NW, Renström F, Rice K, Sala CF, Sennblad B, Serafetinidis I, Smith JA, Soranzo N, Speliotes EK, Stahl EA, Stirrups K, Tentolouris N, Thanopoulou A, Torres M, Traglia M, Tsafantakis E, Javad S, Yanek LR, Zengini E, Becker DM, Bis JC, Brown JB, Cupples LA, Hansen T, Ingelsson E, Karter AJ, Lorenzo C, Mathias RA, Norris JM, Peloso GM, Sheu WH, Toniolo D, Vaidya D, Varma R, Wagenknecht LE, Boeing H, Bottinger EP, Dedoussis G, Deloukas P, Ferrannini E, Franco OH, Franks PW, Gibbs RA, Gudnason V, Hamsten A, Harris TB, Hattersley AT, Hayward C, Hofman A, Jansson JH, Langenberg C, Launer LJ, Levy D, Oostra BA, O'Donnell CJ, O'Rahilly S, Padmanabhan S, Pankow JS, Polasek O, Province MA, Rich SS, Ridker PM, Rudan I, Schulze MB, Smith BH, Uitterlinden AG, Walker M, Watkins H, Wong TY, Zeggini E; EPIC-InterAct Consortium; Laakso M, Borecki IB, Chasman DI, Pedersen O, Psaty BM, Tai ES, van Duijn CM, Wareham NJ, Waterworth DM, Boerwinkle E, Kao WH, Florez JC, Loos RJ, Wilson JG, Frayling TM, Siscovick DS, Dupuis J, Rotter JI, Meigs JB, Scott RA, Goodarzi MO. Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat Commun 2015; 6(1): 5897
CrossRef Pubmed Google scholar
[23]
Zuk O, Schaffner SF, Samocha K, Do R, Hechter E, Kathiresan S, Daly MJ, Neale BM, Sunyaev SR, Lander ES. Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci USA 2014; 111(4): E455–E464
CrossRef Pubmed Google scholar
[24]
Maron BJ, Spirito P. Implications of left ventricular remodeling in hypertrophic cardiomyopathy. Am J Cardiol 1998; 81(11): 1339–1344
CrossRef Pubmed Google scholar
[25]
Klues HG, Schiffers A, Maron BJ. Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients. J Am Coll Cardiol 1995; 26(7): 1699–1708
CrossRef Pubmed Google scholar
[26]
Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 2011; 89(1): 82–93
CrossRef Pubmed Google scholar
[27]
Marian AJ, Braunwald E. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res 2017; 121(7): 749–770
CrossRef Pubmed Google scholar
[28]
Maron BJ, Maron MS, Maron BA, Loscalzo J. Moving beyond the sarcomere to explain heterogeneity in hypertrophic cardiomyopathy: Jacc review topic of the week. J Am Coll Cardiol 2019; 73(15): 1978–1986
CrossRef Pubmed Google scholar
[29]
Friederich MW, Timal S, Powell CA, Dallabona C, Kurolap A, Palacios-Zambrano S, Bratkovic D, Derks TGJ, Bick D, Bouman K, Chatfield KC, Damouny-Naoum N, Dishop MK, Falik-Zaccai TC, Fares F, Fedida A, Ferrero I, Gallagher RC, Garesse R, Gilberti M, González C, Gowan K, Habib C, Halligan RK, Kalfon L, Knight K, Lefeber D, Mamblona L, Mandel H, Mory A, Ottoson J, Paperna T, Pruijn GJM, Rebelo-Guiomar PF, Saada A, Sainz B Jr, Salvemini H, Schoots MH, Smeitink JA, Szukszto MJ, Ter Horst HJ, van den Brandt F, van Spronsen FJ, Veltman JA, Wartchow E, Wintjes LT, Zohar Y, Fernández-Moreno MA, Baris HN, Donnini C, Minczuk M, Rodenburg RJ, Van Hove JLK. Pathogenic variants in glutamyl-tRNAGln amidotransferase subunits cause a lethal mitochondrial cardiomyopathy disorder. Nat Commun 2018; 9(1): 4065
CrossRef Pubmed Google scholar
[30]
Marin TM, Keith K, Davies B, Conner DA, Guha P, Kalaitzidis D, Wu X, Lauriol J, Wang B, Bauer M, Bronson R, Franchini KG, Neel BG, Kontaridis MI. Rapamycin reverses hypertrophic cardiomyopathy in a mouse model of LEOPARD syndrome-associated PTPN11 mutation. J Clin Invest 2011; 121(3): 1026–1043
CrossRef Pubmed Google scholar
[31]
Lee LY, Loscalzo J. Network medicine in pathobiology. Am J Pathol 2019; 189(7): 1311–1326
CrossRef Pubmed Google scholar

Acknowledgements

We gratefully acknowledge all the participants and funding sources. This study was funded by the National Key R&D Program of China (No. 2017YFC0909400), the National Natural Science Foundation of China (Nos. 91439203, 91839302, and 81700413), Shanghai Municipal Science and Technology Major Project (No. 2017SHZDZX01), and the Fundamental Research Funds for the Central Universities, HUST (No. 2016JCTD117).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11684-023-0982-1 and is accessible for authorized users.

Compliance with ethics guidelines

Jiaqi Dai, Tao Wang, Ke Xu, Yang Sun, Zongzhe Li, Peng Chen, Hong Wang, Dongyang Wu, Yanghui Chen, Lei Xiao, Hao Liu, Haoran Wei, Rui Li, Liyuan Peng, Ting Yu, Yan Wang, Zhongsheng Sun, and Dao Wen Wang declare no conflict of interest. All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all the patients for being included in the study.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(4006 KB)

Accesses

Citations

Detail

Sections
Recommended

/