Arthrogryposis multiplex congenita: classification, diagnosis, perioperative care, and anesthesia

Lulu Ma, Xuerong Yu

PDF(124 KB)
PDF(124 KB)
Front. Med. ›› 2017, Vol. 11 ›› Issue (1) : 48-52. DOI: 10.1007/s11684-017-0500-4
REVIEW
REVIEW

Arthrogryposis multiplex congenita: classification, diagnosis, perioperative care, and anesthesia

Author information +
History +

Abstract

Arthrogryposis multiplex congenita (AMC) is a rare disorder characterized by non-progressive, multiple contractures. In addition to affected extremities, patients may also present microstomia, decreased temporomandibular joint mobility. Although the etiology of AMC is unclear, any factor that decreases fetal movement is responsible for AMC. Thus, accurate diagnosis and classification are crucial to the appropriate treatment of AMC. The development of ultrasound technology has enabled prenatal diagnosis. Very early treatment is favorable, and multidisciplinary treatment is necessary to improve the function of AMC patients. Most patients require surgery to release contracture and reconstruct joints. However, perioperative care is challenging, and difficult airway is the first concern of anesthesiologists. Postoperative pulmonary complications are common and regional anesthesia is recommended for postoperative analgesia. This review on AMC is intended for anesthesiologists. Thus, we discuss the treatment and perioperative management of patients undergoing surgery, as well as the diagnosis and classification of AMC.

Keywords

arthrogryposis / amyoplasia / distal arthrogryposis / anesthesia

Cite this article

Download citation ▾
Lulu Ma, Xuerong Yu. Arthrogryposis multiplex congenita: classification, diagnosis, perioperative care, and anesthesia. Front. Med., 2017, 11(1): 48‒52 https://doi.org/10.1007/s11684-017-0500-4

References

[1]
Hall JG. Arthrogryposis multiplex congenita: etiology, genetics, classification, diagnostic approach, and general aspects. J Pediatr Orthop B 1997; 6(3): 159–166
CrossRef Pubmed Google scholar
[2]
Hall JG, Reed SD, Greene G. The distal arthrogryposes: delineation of new entities—review and nosologic discussion. Am J Med Genet 1982; 11(2): 185–239
CrossRef Pubmed Google scholar
[3]
Fahy MJ, Hall JG. A retrospective study of pregnancy complications among 828 cases of arthrogryposis. Genet Couns 1990; 1(1): 3–11
Pubmed
[4]
Darin N, Kimber E, Kroksmark AK, Tulinius M. Multiple congenital contractures: birth prevalence, etiology, and outcome. J Pediatr 2002; 140(1): 61–67
CrossRef Pubmed Google scholar
[5]
Hyett J, Noble P, Sebire NJ, Snijders R, Nicolaides KH. Lethal congenital arthrogryposis presents with increased nuchal translucency at 10–14 weeks of gestation. Ultrasound Obstet Gynecol 1997; 9(5): 310–313
CrossRef Pubmed Google scholar
[6]
Mejlachowicz D, Nolent F, Maluenda J, Ranjatoelina-Randrianaivo H, Giuliano F, Gut I, Sternberg D, Laquerrière A, Melki J. Truncating mutations of MAGEL2, a gene within the Prader-Willi locus, are responsible for severe arthrogryposis. Am J Hum Genet 2015; 97(4): 616–620
CrossRef Pubmed Google scholar
[7]
Bamshad M, Van Heest AE, Pleasure D. Arthrogryposis: a review and update. J Bone Joint Surg Am 2009; 91(Suppl 4): 40–46
CrossRef Pubmed Google scholar
[8]
Bamshad M, Jorde LB, Carey JC. A revised and extended classification of the distal arthrogryposes. Am J Med Genet 1996; 65(4): 277–281
CrossRef Pubmed Google scholar
[9]
Krakowiak PA, Bohnsack JF, Carey JC, Bamshad M. Clinical analysis of a variant of Freeman-Sheldon syndrome (DA2B). Am J Med Genet 1998; 76(1): 93–98
CrossRef Pubmed Google scholar
[10]
Stevenson DA, Carey JC, Palumbos J, Rutherford A, Dolcourt J, Bamshad MJ. Clinical characteristics and natural history of Freeman-Sheldon syndrome. Pediatrics 2006; 117(3): 754–762
CrossRef Pubmed Google scholar
[11]
Freeman EA, Sheldon J. Cranio-carpotarsal dystrophy: undescribed congenital malformation. Arch Dis Child 1938; 13: 227–283
[12]
Pallotta R, Ehresmann T, Fusilli P. Occurrence of Dandy-Walker anomaly in a familial case of distal arthogryposis type IIB. Am J Med Genet 2000; 95(5): 477–481
CrossRef Pubmed Google scholar
[13]
Pallotta R, Ehresmann T, Fusilli P. Ocular findings in distal arthrogryposis. Ophthalmic Genet 2001; 22(2): 125–130
CrossRef Pubmed Google scholar
[14]
Williams MS, Elliott CG, Bamshad MJ. Pulmonary disease is a component of distal arthrogryposis type 5. Am J Med Genet A 2007; 143A(7): 752–756
CrossRef Pubmed Google scholar
[15]
Ramos Arroyo MA, Weaver DD, Beals RK. Congenital contractural arachnodactyly. Report of four additional families and review of literature. Clin Genet 1985; 27(6): 570–581
CrossRef Pubmed Google scholar
[16]
Viljoen D, Ramesar R, Behari D. Beals syndrome: clinical and molecular investigations in a kindred of Indian descent. Clin Genet 1991; 39(3): 181–188
CrossRef Pubmed Google scholar
[17]
van der Linden V, Filho EL, Lins OG, van der Linden A, Aragão MF, Brainer-Lima AM, Cruz DD, Rocha MA, Sobral da Silva PF, Carvalho MD, do Amaral FJ, Gomes JA, Ribeiro de Medeiros IC, Ventura CV, Ramos RC. Congenital Zika syndrome with arthrogryposis: retrospective case series study. BMJ 2016; 354: i3899
CrossRef Pubmed Google scholar
[18]
Tajsharghi H, Kimber E, Kroksmark AK, Jerre R, Tulinius M, Oldfors A. Embryonic myosin heavy-chain mutations cause distal arthrogryposis and developmental myosin myopathy that persists postnatally. Arch Neurol 2008; 65(8): 1083–1090
CrossRef Pubmed Google scholar
[19]
Polizzi A, Huson SM, Vincent A. Teratogen update: maternal myasthenia gravis as a cause of congenital arthrogryposis. Teratology 2000; 62(5): 332–341
CrossRef Pubmed Google scholar
[20]
Bayram Y, Karaca E, Coban Akdemir Z, Yilmaz EO, Tayfun GA, Aydin H, Torun D, Bozdogan ST, Gezdirici A, Isikay S, Atik MM, Gambin T, Harel T, El-Hattab AW, Charng WL, Pehlivan D, Jhangiani SN, Muzny DM, Karaman A, Celik T, Yuregir OO, Yildirim T, Bayhan IA, Boerwinkle E, Gibbs RA, Elcioglu N, Tuysuz B, Lupski JR. Molecular etiology of arthrogryposis in multiple families of mostly Turkish origin. J Clin Invest 2016; 126(2): 762–778
CrossRef Pubmed Google scholar
[21]
Tajsharghi H, Kimber E, Holmgren D, Tulinius M, Oldfors A. Distal arthrogryposis and muscle weakness associated with a β-tropomyosin mutation. Neurology 2007; 68(10): 772–775
CrossRef Pubmed Google scholar
[22]
Jiang M, Zhao X, Han W, Bian C, Li X, Wang G, Ao Y, Li Y, Yi D, Zhe Y, Lo WH, Zhang X, Li J. A novel deletion in TNNI2 causes distal arthrogryposis in a large Chinese family with marked variability of expression. Hum Genet 2006; 120(2): 238–242
CrossRef Pubmed Google scholar
[23]
Sung SS, Brassington AM, Krakowiak PA, Carey JC, Jorde LB, Bamshad M. Mutations in TNNT3 cause multiple congenital contractures: a second locus for distal arthrogryposis type 2B. Am J Hum Genet 2003; 73(1): 212–214
CrossRef Pubmed Google scholar
[24]
Beck AE, McMillin MJ, Gildersleeve HI, Shively KM, Tang A, Bamshad MJ. Genotype-phenotype relationships in Freeman-Sheldon syndrome. Am J Med Genet A 2014; 164A(11): 2808–2813
CrossRef Pubmed Google scholar
[25]
Gurnett CA, Desruisseau DM, McCall K, Choi R, Meyer ZI, Talerico M, Miller SE, Ju JS, Pestronk A, Connolly AM, Druley TE, Weihl CC, Dobbs MB. Myosin binding protein C1: a novel gene for autosomal dominant distal arthrogryposis type 1. Hum Mol Genet 2010; 19(7): 1165–1173
CrossRef Pubmed Google scholar
[26]
McMillin MJ, Below JE, Shively KM, Beck AE, Gildersleeve HI, Pinner J, Gogola GR, Hecht JT, Grange DK, Harris DJ, Earl DL, Jagadeesh S, Mehta SG, Robertson SP, Swanson JM, Faustman EM, Mefford HC, Shendure J, Nickerson DA, Bamshad MJ; University of Washington Center for Mendelian Genomics. Mutations in ECEL1 cause distal arthrogryposis type 5D. Am J Hum Genet 2013; 92(1): 150–156
CrossRef Pubmed Google scholar
[27]
Karakaya M, Heller R, Kunde V, Zimmer KP, Chao CM, Nürnberg P, Cirak S. Novel mutations in the nonselective sodium leak channel (NALCN) lead to distal arthrogryposis with increased muscle tone. Neuropediatrics 2016; 47(4): 273–277
CrossRef Pubmed Google scholar
[28]
Dolk H. EUROCAT: 25 years of European surveillance of congenital anomalies. Arch Dis Child Fetal Neonatal Ed 2005; 90(5): F355–F358
CrossRef Pubmed Google scholar
[29]
Filges I, Hall JG. Failure to identify antenatal multiple congenital contractures and fetal akinesia—proposal of guidelines to improve diagnosis. Prenat Diagn 2013; 33(1): 61–74
CrossRef Pubmed Google scholar
[30]
Vila-Vives JM, Hidalgo-Mora JJ, Soler I,Rubio J, Quiroga R, Perales A. Fetal arthrogryposis secondary to a giant maternal uterine leiomyoma. Case Rep Obstet Gynecol 2012,2012: 726732
CrossRef Pubmed Google scholar
[31]
Navti OB, Kinning E, Vasudevan P, Barrow M, Porter H, Howarth E, Konje J, Khare M. Review of perinatal management of arthrogryposis at a large UK teaching hospital serving a multiethnic population. Prenat Diagn 2010; 30(1): 49–56
Pubmed
[32]
Hyett J, Noble P, Sebire NJ, Snijders R, Nicolaides KH. Lethal congenital arthrogryposis presents with increased nuchal translucency at 10-14 weeks of gestation. Ultrasound Obstet Gynecol 1997; 9(5): 310–313
CrossRef Pubmed Google scholar
[33]
Scott H, Hunter A, Bédard B. Non-lethal arthrogryposis multiplex congenita presenting with cystic hygroma at 13 weeks gestational age. Prenat Diagn 1999; 19(10): 966–971
CrossRef Pubmed Google scholar
[34]
Kurjak A, Vecek N, Hafner T, Bozek T, Funduk-Kurjak B, Ujevic B. Prenatal diagnosis: what does four-dimensional ultrasound add? J Perinat Med 2002; 30(1): 57–62
CrossRef Pubmed Google scholar
[35]
Binkiewicz-Glinska A, Sobierajska-Rek A, Bakula S, Wierzba J, Drewek K, Kowalski IM, Zaborowska-Sapeta K. Arthrogryposis in infancy, multidisciplinary approach: case report. BMC Pediatr 2013; 13(1): 184
CrossRef Pubmed Google scholar
[36]
Matar HE, Beirne P, Garg N. The effectiveness of the Ponseti method for treating clubfoot associated with arthrogryposis: up to 8 years follow-up. J Child Orthop 2016; 10(1): 15–18
CrossRef Pubmed Google scholar
[37]
Martin S, Tobias JD. Perioperative care of the child with arthrogryposis. Paediatr Anaesth 2006; 16(1): 31–37
CrossRef Pubmed Google scholar
[38]
Robinson PJ. Freeman Sheldon syndrome: severe upper airway obstruction requiring neonatal tracheostomy. Pediatr Pulmonol 1997; 23(6): 457–459
CrossRef Pubmed Google scholar
[39]
Schefels J, Wenzl TG, Merz U, Ramaekers V, Holzki J, Rudnik-Schoeneborn S, Hermanns B, Hörnchen H. Functional upper airway obstruction in a child with Freeman-Sheldon syndrome. ORL J Otorhinolaryngol Relat Spec 2002; 64(1): 53–56
CrossRef Pubmed Google scholar
[40]
Chen A, Lai HY, Lee Y, Yang YL, Ho JS, Shyr MH. Anesthesia for Freeman-Sheldon syndrome using a folded laryngeal mask airway. Anesth Analg 2005; 101(2): 614–615
CrossRef Pubmed Google scholar
[41]
Thomas PB, Parry MG. The difficult paediatric airway: a new method of intubation using the laryngeal mask airway, Cook airway exchange catheter and tracheal intubation fibrescope. Paediatr Anaesth 2001; 11(5): 618–621
CrossRef Pubmed Google scholar
[42]
Kim JS, Park SY, Min SK, Kim JH, Lee SY, Moon BK. Awake nasotracheal intubation using fiberoptic bronchoscope in a pediatric patient with Freeman-Sheldon syndrome. Paediatr Anaesth 2005; 15(9): 790–792
CrossRef Pubmed Google scholar
[43]
Sadacharam K, Ahmad M. Epidural anesthesia for labor pain and cesarean section in a parturient with arthrogryposis multiplex congenita. J Anaesthesiol Clin Pharmacol 2016; 32(3): 410–411
CrossRef Pubmed Google scholar
[44]
Ponde V, Desai AP, Shah D. Comparison of success rate of ultrasound-guided sciatic and femoral nerve block and neurostimulation in children with arthrogryposis multiplex congenita: a randomized clinical trial. Paediatr Anaesth 2013; 23(1): 74–78
CrossRef Pubmed Google scholar
[45]
Ion T, Cook-Sather SD, Finkel RS, Cucchiaro G. Fascia iliaca block for an infant with arthrogryposis multiplex congenita undergoing muscle biopsy. Anesth Analg 2005; 100(1): 82–84
CrossRef Pubmed Google scholar
[46]
Borazan H, Selcuk Uluer M, Sahin O, Okesli S. Regional anesthesia with a single spinal anesthesia using hyperbaric bupivacaine in a child with arthroglyposis multiplex congenita. J Anesth 2012; 26(2): 283–285
CrossRef Pubmed Google scholar
[47]
Wood GG, Jacka MJ. Spinal hematoma following spinal anesthesia in a patient with spina bifida occulta. Anesthesiology 1997; 87(4): 983–984
CrossRef Pubmed Google scholar
[48]
Tidmarsh MD, May AE. Epidural anaesthesia and neural tube defects. Int J Obstet Anesth 1998; 7(2): 111–114
CrossRef Pubmed Google scholar
[49]
Hopkins PM, Ellis FR, Halsall PJ. Hypermetabolism in arthrogryposis multiplex congenital. Anaesthesia 1991; 46(5): 374–375
CrossRef Google scholar
[50]
Chowdhuri R, Samui S, Kundu AK. Anesthetic management of a neonate with arthrogryposis multiplex congenita for emergency laparotomy. J Anaesthesiol Clin Pharmacol 2011; 27(2): 244–246
CrossRef Pubmed Google scholar

Compliance with ethics guidelines

Lulu Ma and Xuerong Yu declare that they have no conflict of interest. The manuscript is a review article and does not need ethical approval from the institutional review board. Images included in this article have been de-identified and the patients consented to the use of their medical records.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(124 KB)

Accesses

Citations

Detail

Sections
Recommended

/