James E. Lovelock, famed for his Gaia hypothesis, which views the Earth as a living integrated and interconnected self-regulating system whose equilibrium comes about from complex energy-based interactions and feedback loops, ultimately sustaining life, passed away at the end of July, 2022 at the age of 103. Not only are the adaptive mechanisms of Gaia central to the conversation of environmental homeostasis, they lie at the heart of climate change and global warming. Lovelock is also remembered as the co-inventor of the electron capture detector that eventually allowed for the sensitive detection of chlorofluorocarbons and pesticides. Finally, Lovelock’s free-spirited nature and research independence allow academia to rethink current research’s modus operandi.
● Waste refrigerator polyurethane (WRPU) was ingested and biodegraded by mealworms. ● The carbon in WRPU-based frass was lower than that in WRPU. ● Urethane groups in WRPU were broken down after ingestion by mealworms. ● Thermal stability of WRPU-based frass were deteriorated compared to that of WRPU. ● Gut microbiomes of mealworms fed using WRPU were distinct from that fed using bran.
Refrigerator insulation replacement results in discarding a large amount of waste refrigerator polyurethane (WRPU). Insect larvae like mealworms have been used to biodegrade pristine plastics. However, knowledge about mealworms degrading WRPU is scarce. This study presents an in-depth investigation of the degradation of WRPU by mealworms using the micro-morphology, composition, and functional groups of WRPU and the egested frass characteristics. It was found that the WRPU debris in frass was scoured, implying that WRPU was ingested and degraded by mealworms. The carbon content of WRPU-based frass was lower than that of WRPU, indicating that mealworms utilized WRPU as a carbon source. The urethane groups in WRPU were broken, and benzene rings’ C=C and C–H bonds in the isocyanate disappeared after being ingested by mealworms. Thermal gravimetric-differential thermal gravimetry analysis showed that the weight loss temperature of WRPU-based frass was 300 °C lower than that of WRPU, indicating that the thermal stability of WRPU deteriorated after being ingested. The carbon balance analysis confirmed that carbon in the ingested WRPU released as CO2 increased from 18.84 % to 29.80 %, suggesting that WRPU was partially mineralized. The carbon in the mealworm biomass ingesting WRPU decreased. The possible reason is that WRPU does not supply sufficient nutrients for mealworm growth, and the impurities and odor present in WRPU affect the appetite of the mealworms. The microbial community analysis indicated that WRPU exerts a considerable effect on the gut microorganism of mealworms. These findings confirm that mealworms degrade WRPU.
● Converting xylose to caproate under a low temperature of 20 °C by MCF was verified. ● Final concentration of caproate from xylose in a batch reactor reached 1.6 g/L. ● Changing the substrate to ethanol did not notably increase the caproate production. ● Four genera, including Bifidobacterium , were revealed as caproate producers. ● The FAB pathway and incomplete RBO pathway were revealed via metagenomic analysis.
Mixed culture fermentation (MCF) is challenged by the unqualified activity of enriched bacteria and unwanted methane dissolution under low temperatures. In this work, caproate production from xylose was investigated by MCF at a low temperature (20 °C). The results showed that a 9 d long hydraulic retention time (HRT) in a continuously stirred tank reactor was necessary for caproate production (~0.3 g/L, equal to 0.6 g COD/L) from xylose (10 g/L). The caproate concentration in the batch mode was further increased to 1.6 g/L. However, changing the substrate to ethanol did not promote caproate production, resulting in ~1.0 g/L after 45 d of operation. Four genera, Bifidobacterium, Caproiciproducens, Actinomyces, and Clostridium_sensu_stricto_12, were identified as the enriched caproate-producing bacteria. The enzymes in the fatty acid biosynthesis (FAB) pathway for caproate production were identified via metagenomic analysis. The enzymes for the conversion of (Cn+2)-2,3-Dehydroxyacyl-CoA to (Cn+2)-Acyl-CoA (i.e., EC 1.3.1.8 and EC 1.3.1.38) in the reverse β-oxidation (RBO) pathway were not identified. These results could extend the understanding of low-temperature caproate production.
● Environmental parameters affected functional bacteria and network associations. ● The structure and interactions of AS networks changed greatly within tanks. ● Anoxic co-occurrence network was more unstable and easily influenced. ● Composition of functional bacteria had a seasonal succession pattern. ● Tetrasphaera was the major PAO in spring and winter leading a better P removal.
Understanding the structures and dynamics of bacterial communities in activated sludge (AS) in full-scale wastewater treatment plants (WWTPs) is of both engineering and ecological significance. Previous investigations have mainly focused on the AS communities of WWTP aeration tanks, and the differences and interactions between the communities in anaerobic and anoxic tanks of the AS system remain poorly understood. Here, we investigated the structures of bacterial communities and their inter-connections in three tanks (anaerobic, anoxic, and aerobic) and influent from a full-scale WWTP with conventional anaerobic/anoxic/aerobic (A/A/O) process over a year to explore their functionality and network differentiation. High-throughput sequencing showed that community compositions did not differ appreciably between the different tanks, likely due to the continuous sludge community interchange between tanks. However, network analysis showed significant differences in inter-species relationships, OTU topological roles, and keystone populations in the different AS communities. Moreover, the anoxic network is expected to be more unstable and easily affected by environmental disturbance. Tank-associated environmental factors, including dissolved oxygen, pH, and nutrients, were found to affect the relative abundance of functional genera (i.e., AOB, NOB, PAOs, and denitrifiers), suggesting that these groups were more susceptible to environmental variables than other bacteria. Therefore, this work could assist in improving our understanding of tank-associated microbial ecology, particularly the response of functional bacteria to seasonal variations in WWTPs employing A/A/O process.
● The highest seed germination index was achieved at 0.3 g/g total solids of food waste. ● Proline was identified as the key amino acid related with the composting process. ● Amino acid metabolism sequences predominated during the whole composting process.
This study systematically investigated the changes of amino acids as the composting process of food waste proceeded. It is found that the addition of 0.3 g/g total solids of food waste achieved the highest seed germination index of the product (268 %). The microbial community results indicated that the abundance of amino acid metabolism sequences remained at high levels during the whole composting process. Proline was identified as the key amino acid related with the nutrient quality of product during the composting of food waste. Further plant germination and hydroponic experiments found, that compared with those without the addition of proline, the addition of 50 mg/L proline increased seed germination rate by 20 %, increased shoot length by 3 %, increased root biomass of seedlings by 82 %, and increased leaf biomass of seedlings by 76 %, respectively. Firmicutes, γ-Pseudomonadota, Chloroflexi and Planctomycetes were the key identified bacteria related with the increase of proline during the composting of food waste. Meanwhile, the enzymatic tests of the activities of superoxide dismutase, peroxidase and malondialdehyde indicated that proline did not cause oxidative damage on the growth of plants. This study provided novel insights into the changes of amino acids, microbial community, and enzymatic activities related with the nutrient quality of product during the composting of food waste.
● Backwashing in sand filters with 2-h and 4-h EBCTs was simulated. ● Removal efficiency of five micropollutants recovered within 2 d at 2-h EBCT. ● Active biomass of sand filters recovered within 2 d under two EBCTs. ● Microbial composition gradually recovered to pre-backwashing level at 2-h EBCT. ● Recovered microbes only accounted for 15.55 %–25.69 % in the sand filters at 4-h EBCT.
Backwashing is crucial for preventing clogging of sand filters. However, few studies have investigated the effect of backwashing on micropollutant removal and the dynamic changes in the microbial community in sand filters. Here, we used a series of manganese and quartz sand filters under empty bed contact times (EBCTs) of 2 h and 4 h to explore variations in micropollutant degradation and temporal dynamics of the microbial community after backwashing. The results showed that the removal efficiencies of caffeine, sulfamethoxazole, sulfadiazine, trimethoprim, atrazine, and active biomass recovered within 2 d after backwashing in both types of sand filters at 2-h EBCT, but the recovery of sulfadiazine and trimethoprim was not observed at 4-h EBCT. Moreover, the removal efficiency of atenolol increased after backwashing in the manganese sand filters, whereas maintained almost complete removal efficiency in the quartz sand filters at both EBCTs. Pearson correlation analysis indicated that microbial community composition gradually recovered to the pre-backwashing level (R increased from 0.53 to 0.97) at 2-h EBCT, but shifted at 4-h EBCT (R < 0.25) after backwashing. Furthermore, the compositions of the recovered, depleted, and improved groups of microbes were distinguished by applying hierarchical clustering to the differentially abundant amplicon sequence variants. The cumulative relative abundance of recovered microbes at 2-h EBCT was 82.76 % ± 0.43 % and 46.82 % ± 4.34 % in the manganese and quartz sand filters, respectively. In contrast, at 4-h EBCT, the recovered microbes dropped to 15.55 %–25.69 % in both types of sand filters.
● pz-UiO-66 was synthesized facilely by a solvothermal method. ● Efficient capture of copper from highly acidic solution was achieved by pz-UiO-66. ● pz-UiO-66 exhibited excellent selectivity and capacity for copper capture. ● Pyrazine-N in pz-UiO-66 was shown to be the dominant adsorption site.
The selective capture of copper from strongly acidic solutions is of vital importance from the perspective of sustainable development and environmental protection. Metal organic frameworks (MOFs) have attracted the interest of many scholars for adsorption due to their fascinating physicochemical characteristics, including adjustable structure, strong stability and porosity. Herein, pz-UiO-66 containing a pyrazine structure is successfully synthesized for the efficient separation of copper from strongly acidic conditions. Selective copper removal at low pH values is accomplished by using this material that is not available in previously reported metal–organic frameworks. Furthermore, the material exhibits excellent adsorption capacity, with a theoretical maximum copper uptake of 247 mg/g. As proven by XPS and FT-IR analysis, the coordination of pyrazine nitrogen atoms with copper ions is the dominant adsorption mechanism of copper by pz-UiO-66. This work provides an opportunity for efficient and selective copper removal under strongly acidic conditions, and promises extensive application prospects for the removal of copper in the treatment for acid metallurgical wastewater.
● NH3 in biogas had a slight inhibitory effect on dry reforming. ● Coexistence of H2S and NH3 led to faster decline of biogas conversion. ● Regeneration was effective for catalysts deactivated under synergetic effect.
Biogas is a renewable biomass energy source mainly composed of CH4 and CO2. Dry reforming is a promising technology for the high-value utilization of biogas. Some impurity gases in biogas can not be completely removed after pretreatment, which may affect the performance of dry reforming. In this study, the influence of typical impurities H2S and NH3 on dry reforming was studied using Ni/MgO catalyst. The results showed that low concentration of H2S in biogas could cause serious deactivation of catalyst. Characterization results including EDS, XPS and TOF-SIMS confirmed the adsorption of sulfur on the catalyst surface, which was the cause of catalyst poisoning. We used air calcination method to regenerate the sulfur-poisoned catalysts and found that the regeneration temperature higher than 500 °C could help catalyst recover the original activity. NH3 in the concentration range of 50–10000 ppm showed a slight inhibitory effect on biogas dry reforming. The decline rate of biogas conversion efficiency increased with the increase of NH3 concentration. This was related to the reduction of oxygen activity on catalyst surface caused by NH3. The synergetic effect of H2S and NH3 in biogas was investigated. The results showed that biogas conversion decreased faster under the coexistence of H2S and NH3 than under the effect of H2S alone, so as the surface oxygen activity of catalyst. Air calcination regeneration could also recover the activity of the deactivated catalyst under the synergetic effect of H2S and NH3.
● All 1,4-naphthoquinone hybrids exhibited significant antimicrobial activity. ● Presence of a hydroxyl group on aromatic B-ring of juglone was crucial for activity. ● Juglone can cause DNA damage by producing ROS and downregulation of RecA. ● Juglone has the potential to become a disinfectant.
The diverse and large-scale application of disinfectants posed potential health risks and caused ecological damage during the 2019-nCoV pandemic, thereby increasing the demands for the development of disinfectants based on natural products, with low health risks and low aquatic toxicity. In the present study, a few natural naphthoquinones and their derivatives bearing the 1,4-naphthoquinone skeleton were synthesized, and their antibacterial activity against selected bacterial strains was evaluated. In vitro antibacterial activities of the compounds were investigated against Escherichia coli and Staphylococcus aureus. Under the minimum inhibitory concentration (MIC) of ≤ 0.125 μmol/L for juglone (1a), 5,8-dimethoxy-1,4-naphthoquinone (1f), and 7-methyl-5-acetoxy-1,4-naphthoquinone (3c), a strong antibacterial activity against S. aureus was observed. All 1,4-naphthoquinone derivatives exhibited a strong antibacterial activity, with MIC values ranging between 15.625 and 500 μmol/L and EC50 values ranging between 10.56 and 248.42 μmol/L. Most of the synthesized compounds exhibited strong antibacterial activities against S. aureus. Among these compounds, juglone (1a) showed the strongest antibacterial activity. The results from mechanistic investigations indicated that juglone, a natural naphthoquinone, caused cell death by inducing reactive oxygen species production in bacterial cells, leading to DNA damage. In addition, juglone could reduce the self-repair ability of bacterial DNA by inhibiting RecA expression. In addition to having a potent antibacterial activity, juglone exhibited low cytotoxicity in cell-based investigations. In conclusion, juglone is a strong antibacterial agent with low toxicity, indicating that its application as a bactericidal agent may be associated with low health risks and aquatic toxicity.
● A novel nonpolar super-aligned carbon nanotube (SACNT) membrane was prepared. ● SACNT membranes achieved smoother and more uniform structures. ● SACNT membranes have inert chemistry and unique nonpolar wetting feature. ● SACNT membranes exhibit superior separation and antifouling capabilities. ● SACNT membranes achieved superior oil/water separation efficiency.
Membrane separation technology has made great progress in various practical applications, but the unsatisfactory separation performance of prevailing membrane materials hampers its further sustainable growth. This study proposed a novel nonpolar super-aligned carbon nanotube (SACNT) membrane, which was prepared with a layer-by-layer cross-stacking method. Through controlling the number of stacked SACNT layers, three kinds of SACNT membranes (SACNT_200, SACNT_300, and SACNT_400) were prepared. Systematic characterizations and filtration tests were performed to investigate their physico-chemical properties, surface wetting behavior, and filtration performance. Compared with two commercial membranes (Com_0.22 and Com_0.45), all the SACNT membranes achieved smoother and more uniform structures. Due to the hexagonal graphene structure of CNTs, the surface chemistry of the SACNT membranes is simple and inert, thereby potentially eliminating the covalent-bonding-induced membrane fouling. Besides, the SACNT membranes exhibited a typical nonpolar wetting behavior, with high contact angles for polar liquids (water: ~124.9°–126.5°; formamide: ~80.0°–83.9°) but low contact angles for nonpolar diiodomethane (~18.8°–20.9°). This unique nonpolar feature potentially leads to weak interactions with polar substances. Furthermore, compared with the commercial membranes, the SACNT membranes obtained a significantly higher selectivity while achieving a comparable or higher permeability (depending on the number of stacked layers). Moreover, the SACNT membranes exhibited superior separation performance in various application scenarios, including municipal wastewater treatment (> 2.3 times higher cleaning efficiency), electro-assistant fouling inhibition (or even self-cleaning), and oil/water separation (> 99.2 % of separation efficiency), suggesting promising application prospects in various fields.
● Status of inactivation of pathogenic microorganisms by SO4•− is reviewed. ● Mechanism of SO4•− disinfection is outlined. ● Possible generation of DBPs during disinfection using SO4•− is discussed. ● Possible problems and challenges of using SO4•− for disinfection are presented.
Sulfate radicals have been increasingly used for the pathogen inactivation due to their strong redox ability and high selectivity for electron-rich species in the last decade. The application of sulfate radicals in water disinfection has become a very promising technology. However, there is currently a lack of reviews of sulfate radicals inactivated pathogenic microorganisms. At the same time, less attention has been paid to disinfection by-products produced by the use of sulfate radicals to inactivate microorganisms. This paper begins with a brief overview of sulfate radicals’ properties. Then, the progress in water disinfection by sulfate radicals is summarized. The mechanism and inactivation kinetics of inactivating microorganisms are briefly described. After that, the disinfection by-products produced by reactions of sulfate radicals with chlorine, bromine, iodide ions and organic halogens in water are also discussed. In response to these possible challenges, this article concludes with some specific solutions and future research directions.
● Metabolome can distinguish pregnant women exposure to PFOA at different degrees. ● Metabolome can reveal the metabolic changes of pregnant women exposure to PFOA. ● PFOA exposure degrees could affect the GSH metabolism of pregnant women. ● PFOA exposure degrees could change the microbiota metabolism of pregnant women.
Perfluorooctanoic acid (PFOA) is a novel type of persistent synthetic organic pollutant, and its exposure on pregnant women can cause some adverse effects, such as pregnancy-induced hypertension, gestational diabetes mellitus, and preeclampsia. Therefore, understanding the metabolic changes caused by PFOA exposure is of great significance to protect pregnant women from its adverse effects. In this study, the metabolomes from the urine samples of pregnant women exposure to PFOA at different degrees were analyzed by GC-MS and LC-MS. The samples in different groups were distinguished and the differential metabolites were screened based on the VIP value, FC, and P-value of each comparison group through multivariate statistical analysis. The pathways related to differential metabolites were searched to reveal the effects of PFOA exposure on metabolic changes in pregnant women at different degrees. Finally, the ROC of differential metabolites was performed, and the differential metabolites with large area under the curve (AUC) values were selected and compared to identify the mutually differential metabolites. Meanwhile, these metabolites were fitted with a multivariable to explore if they could be used to distinguish different groups. The quantitative comparison of mutually differential metabolites revealed that the levels of L-cysteine, glycine, and 5-aminovaleric acid were positively correlated with the degree of PFOA exposure, indicating that different degrees of PFOA exposure could affect the synthesis or degradation of GSH and change the metabolism of oral or intestinal microbiota. Additionally, they may cause oxidative stress and abnormal fat metabolism in pregnant women.
● The removal of virus aerosols by filtration and UV-C irradiation was proposed. ● The filtration efficiency for virus aerosols was affected by the filtration rate. ● The inactivation rate by UV-C was not linear with irradiation intensity or time. ● The virus trapped by filter material had a shielding effect on UV-C irradiation.
The COVID-19 pandemic remains ever prevalent and afflicting—partially because one of its transmission pathways is aerosol. With the widely used central air conditioning systems worldwide, indoor virus aerosols can rapidly migrate, thus resulting in rapid infection transmission. It is therefore important to install microbial aerosol treatment units in the air conditioning systems, and we herein investigated the possibility of combining such filtration with UV irradiation to address virus aerosols. Results showed that the removal efficiency of filtration towards f2 and MS2 phages depended on the type of commercial filter material and the filtration speed, with an optimal velocity of 5 cm/s for virus removal. Additionally, it was found that UV irradiation had a significant effect on inactivating viruses enriched on the surfaces of filter materials; MS2 phages had greater resistance to UV-C irradiation than f2 phages. The optimal inactivation time for UV-C irradiation was 30 min, with higher irradiation times presenting no substantial increase in inactivation rate. Moreover, excessive virus enrichment on the filters decreased the inactivation effect. Timely inactivation is therefore recommended. In general, the combined system involving filtration with UV-C irradiation demonstrated a significant removal effect on virus aerosols. Moreover, the system is simple and economical, making it convenient for widespread implementation in air-conditioning systems.