Nonpolar cross-stacked super-aligned carbon nanotube membrane for efficient wastewater treatment
Shuang Zhang, Shuai Liang, Yifan Gao, Yang Wu, Xia Huang
Nonpolar cross-stacked super-aligned carbon nanotube membrane for efficient wastewater treatment
● A novel nonpolar super-aligned carbon nanotube (SACNT) membrane was prepared.
● SACNT membranes achieved smoother and more uniform structures.
● SACNT membranes have inert chemistry and unique nonpolar wetting feature.
● SACNT membranes exhibit superior separation and antifouling capabilities.
● SACNT membranes achieved superior oil/water separation efficiency.
Membrane separation technology has made great progress in various practical applications, but the unsatisfactory separation performance of prevailing membrane materials hampers its further sustainable growth. This study proposed a novel nonpolar super-aligned carbon nanotube (SACNT) membrane, which was prepared with a layer-by-layer cross-stacking method. Through controlling the number of stacked SACNT layers, three kinds of SACNT membranes (SACNT_200, SACNT_300, and SACNT_400) were prepared. Systematic characterizations and filtration tests were performed to investigate their physico-chemical properties, surface wetting behavior, and filtration performance. Compared with two commercial membranes (Com_0.22 and Com_0.45), all the SACNT membranes achieved smoother and more uniform structures. Due to the hexagonal graphene structure of CNTs, the surface chemistry of the SACNT membranes is simple and inert, thereby potentially eliminating the covalent-bonding-induced membrane fouling. Besides, the SACNT membranes exhibited a typical nonpolar wetting behavior, with high contact angles for polar liquids (water: ~124.9°–126.5°; formamide: ~80.0°–83.9°) but low contact angles for nonpolar diiodomethane (~18.8°–20.9°). This unique nonpolar feature potentially leads to weak interactions with polar substances. Furthermore, compared with the commercial membranes, the SACNT membranes obtained a significantly higher selectivity while achieving a comparable or higher permeability (depending on the number of stacked layers). Moreover, the SACNT membranes exhibited superior separation performance in various application scenarios, including municipal wastewater treatment (> 2.3 times higher cleaning efficiency), electro-assistant fouling inhibition (or even self-cleaning), and oil/water separation (> 99.2 % of separation efficiency), suggesting promising application prospects in various fields.
Membrane fouling / Wastewater / Membrane separation / Antifouling / Aligned carbon nanotube
[1] |
Abaie E , Xu L , Shen Y X . (2021). Bioinspired and biomimetic membranes for water purification and chemical separation: a review. Frontiers of Environmental Science & Engineering, 15( 6): 124
CrossRef
Google scholar
|
[2] |
Andersen S M , Borghei M , Dhiman R , Ruiz V , Kauppinen E , Skou E . (2014). Adsorption behavior of perfluorinated sulfonic acid ionomer on highly graphitized carbon nanofibers and their thermal stabilities. Journal of Physical Chemistry C, 118( 20): 10814– 10823
CrossRef
Google scholar
|
[3] |
Dizon G V , Lee Y S , Venault A , Maggay I V , Chang Y . (2021). Zwitterionic PMMA-r-PEGMA-r-PSBMA copolymers for the formation of anti-biofouling bicontinuous membranes by the VIPS process. Journal of Membrane Science, 618 : 118753
CrossRef
Google scholar
|
[4] |
Han B J, Liang S, Wang B, Zheng J Z, Xie X, Xiao K, Wang X M, Huang X ( 2019). Simultaneous determination of surface energy and roughness of dense membranes by a modified contact angle method. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 562: 370– 376
CrossRef
Google scholar
|
[5] |
Hand S , Cusick R D . (2021). Electrochemical disinfection in water and wastewater treatment: Identifying impacts of water quality and operating conditions on performance. Environmental Science & Technology, 55( 6): 3470– 3482
CrossRef
Pubmed
Google scholar
|
[6] |
Hu Y T , Lu Z H , Wei C , Yu S C , Liu M H , Gao C J . (2018). Separation and antifouling properties of hydrolyzed PAN hybrid membranes prepared via in-situ sol-gel SiO2 nanoparticles growth. Journal of Membrane Science, 545 : 250– 258
CrossRef
Google scholar
|
[7] |
Ihsanullah
CrossRef
Google scholar
|
[8] |
Jia F C , Xiao X , Nashalian A , Shen S , Yang L , Han Z Y , Qu H J , Wang T M , Ye Z , Zhu Z J , Huang L J , Wang Y X , Tang J G , Chen J . (2022). Advances in graphene oxide membranes for water treatment. Nano Research, 15( 7): 6636– 6654
CrossRef
Google scholar
|
[9] |
Jiang J , Ma B Y , Yang C W , Duan X Y , Tang Q . (2022). Fabrication of anti-fouling and photocleaning PVDF microfiltration membranes embedded with N-TiO2 photocatalysts. Separation and Purification Technology, 298 : 121673
CrossRef
Google scholar
|
[10] |
Lee J H , Kim H S , Yun E T , Ham S Y , Park J H , Ahn C H , Lee S H , Park H D . (2020). Vertically aligned carbon nanotube membranes: water purification and beyond. Membranes (Basel), 10( 10): 273
CrossRef
Pubmed
Google scholar
|
[11] |
Li M , Wu L , Zhang C , Chen W , Liu C . (2019). Hydrophilic and antifouling modification of PVDF membranes by one-step assembly of tannic acid and polyvinylpyrrolidone. Applied Surface Science, 483 : 967– 978
CrossRef
Google scholar
|
[12] |
Li M , Zuo K , Liang S , Xiao K , Liang P , Wang X , Huang X . (2020). Electrically tuning ultrafiltration behavior for efficient water purification. Environmental Science & Technology, 54( 18): 11536– 11545
CrossRef
Pubmed
Google scholar
|
[13] |
Li Y , Gao R , Zhang J , Zhang Y , Liang S . (2022). Antifouling conductive composite membrane with reversible wettability for wastewater treatment. Membranes (Basel), 12( 6): 626
CrossRef
Pubmed
Google scholar
|
[14] |
Li Z , Lu L . (2022). Wastewater treatment meets artificial photosynthesis: solar to green fuel production, water remediation and carbon emission reduction. Frontiers of Environmental Science & Engineering, 16( 4): 53
CrossRef
Google scholar
|
[15] |
Liu K , Sun Y , Liu P , Lin X , Fan S , Jiang K . (2011). Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors. Advanced Functional Materials, 21( 14): 2721– 2728
CrossRef
Google scholar
|
[16] |
Liu X , Tian C , Zhao Y , Xu W , Dong D , Shih K , Yan T , Song W . (2022). Enhanced cross-flow filtration with flat-sheet ceramic membranes by titanium-based coagulation for membrane fouling control. Frontiers of Environmental Science & Engineering, 16( 8): 110
CrossRef
Google scholar
|
[17] |
Ma R H , Lu X L , Zhang S Z , Ren K , Gu J , Liu C , Liu Z Q , Wang H L . (2022). Constructing discontinuous silicon-island structure with low surface energy based on the responsiveness of hydrophilic layers to improve the anti-fouling property of membranes. Journal of Membrane Science, 659 : 120770
CrossRef
Google scholar
|
[18] |
Ma Z , Liang S , Zhang S , Xiao K , Wang X , Li M , Huang X . (2020). Surface functionalization via synergistic grafting of surface-modified silica nanoparticles and layered double hydroxide nanosheets for fabrication of superhydrophilic but relatively oleophobic antifouling membranes. Separation and Purification Technology, 247 : 116955
CrossRef
Google scholar
|
[19] |
Qin A W , Wu X L , Ma B M , Zhao X Z , He C J . (2014). Enhancing the antifouling property of poly (vinylidene fluoride)/SiO2 hybrid membrane through TIPS method. Journal of Materials Science, 49( 22): 7797– 7808
CrossRef
Google scholar
|
[20] |
Racar M , Dolar D , Karadakić K , Čavarović N , Glumac N , Ašperger D , Košutić K . (2020). Challenges of municipal wastewater reclamation for irrigation by MBR and NF/RO: physico-chemical and microbiological parameters, and emerging contaminants. Science of the Total Environment, 722 : 137959
CrossRef
Pubmed
Google scholar
|
[21] |
Rasekh A , Raisi A . (2021). Electrospun nanofibrous polyether-block-amide membrane containing silica nanoparticles for water desalination by vacuum membrane distillation. Separation and Purification Technology, 275 : 119149
CrossRef
Google scholar
|
[22] |
Seyed Shahabadi S M , Brant J A . (2019). Bio-inspired superhydrophobic and superoleophilic nanofibrous membranes for non-aqueous solvent and oil separation from water. Separation and Purification Technology, 210 : 587– 599
CrossRef
Google scholar
|
[23] |
Shen Y, Xiao K, Liang P, Sun J, Sai S, Huang X ( 2012). Characterization of soluble microbial products in 10 large-scale membrane bioreactors for municipal wastewater treatment in China. Journal of Membrane Science, 415–416( 0): 336– 345
CrossRef
Google scholar
|
[24] |
Shi Z , Zhang W , Zhang F , Liu X , Wang D , Jin J , Jiang L . (2013). Ultrafast separation of emulsified oil/water mixtures by ultrathin free-standing single-walled carbon nanotube network films. Advanced Materials, 25( 17): 2422– 2427
CrossRef
Pubmed
Google scholar
|
[25] |
Su B , Tian Y , Jiang L . (2016). Bioinspired interfaces with superwettability: from materials to chemistry. Journal of the American Chemical Society, 138( 6): 1727– 1748
CrossRef
Pubmed
Google scholar
|
[26] |
Sun C , Lyu Q , Si Y , Tong T , Lin L C , Yang F , Tang C Y , Dong Y . (2022a). Superhydrophobic carbon nanotube network membranes for membrane distillation: high-throughput performance and transport mechanism. Environmental Science & Technology, 56( 9): 5775– 5785
CrossRef
Pubmed
Google scholar
|
[27] |
Sun F Y , Zeng H J , Tao S Y , Huang Y X , Dong W Y , Xing D Y . (2022b). Nanofiltration membrane fabrication by the introduction of polyhedral oligomeric silsesquioxane nanoparticles: feasibility evaluation and the mechanisms for breaking “trade-off” effect. Desalination, 527 : 115515
CrossRef
Google scholar
|
[28] |
Tiraferri A , Kang Y , Giannelis E P , Elimelech M . (2012). Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms. Environmental Science & Technology, 46( 20): 11135– 11144
CrossRef
Pubmed
Google scholar
|
[29] |
van Oss C J . (2003). Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. Journal of Molecular Recognition, 16( 4): 177– 190
CrossRef
Pubmed
Google scholar
|
[30] |
Van Oss C J ( 2006). Interfacial Forces in Aqueous Media. New York: Taylor & Francis
|
[31] |
van Oss C J ( 2007). Development and applications of the interfacial tension between water and organic or biological surfaces. Colloids and Surfaces. B, Biointerfaces, 54( 1): 2– 9
CrossRef
Pubmed
Google scholar
|
[32] |
Wang B , Zhang Y , Zhang L . (2017). Selective surface tension induced patterning on flexible textiles via click chemistry. Nanoscale, 9( 14): 4777– 4786
CrossRef
Pubmed
Google scholar
|
[33] |
Wang M , Wang J , Jiang J W . (2022). Membrane fouling: Microscopic insights into the effects of surface chemistry and roughness. Advanced Theory and Simulations, 5( 1): 2100395
CrossRef
Google scholar
|
[34] |
Wang R , Chen J , Chen L , Ye Z , Wu C , Gao W , Xie L , Ying Y . (2020). Ultrathin and ultradense aligned carbon nanotube membranes for water purification with enhanced rejection performance. Desalination, 494 : 114671
CrossRef
Google scholar
|
[35] |
Wang Z , Elimelech M , Lin S . (2016). Environmental applications of interfacial materials with special wettability. Environmental Science & Technology, 50( 5): 2132– 2150
CrossRef
Pubmed
Google scholar
|
[36] |
Wei H , Wei Y , Wu Y , Liu L , Fan S , Jiang K . (2013). High-strength composite yarns derived from oxygen plasma modified super-aligned carbon nanotube arrays. Nano Research, 6( 3): 208– 215
CrossRef
Google scholar
|
[37] |
Wei S , Du L , Chen S , Yu H , Quan X . (2021). Electro-assisted CNTs/ceramic flat sheet ultrafiltration membrane for enhanced antifouling and separation performance. Frontiers of Environmental Science & Engineering, 15( 1): 11
CrossRef
Google scholar
|
[38] |
Xiao K , Liang S , Wang X , Chen C , Huang X . (2019). Current state and challenges of full-scale membrane bioreactor applications: a critical review. Bioresource Technology, 271 : 473– 481
CrossRef
Pubmed
Google scholar
|
[39] |
Xiong S , Qian X F , Zhong Z X , Wang Y . (2022). Atomic layer deposition for membrane modification, functionalization and preparation: a review. Journal of Membrane Science, 658 : 120740
CrossRef
Google scholar
|
[40] |
Xu C Q , Huang W , Lu X , Yan D Y , Chen S T , Huang H . (2012). Preparation of PVDF porous membranes by using PVDF-g-PVP powder as an additive and their antifouling property. Radiation Physics and Chemistry, 81( 11): 1763– 1769
CrossRef
Google scholar
|
[41] |
Yang Y , Qiao S , Zheng M , Zhou J , Quan X . (2019). Enhanced permeability, contaminants removal and antifouling ability of CNTs-based hollow fiber membranes under electrochemical assistance. Journal of Membrane Science, 582 : 335– 341
CrossRef
Google scholar
|
[42] |
Zhang H , Quan X , Chen S , Yu H , Niu J . (2020a). Electrokinetic enhancement of water flux and ion rejection through graphene oxide/carbon nanotube membrane. Environmental Science & Technology, 54( 23): 15433– 15441
CrossRef
Pubmed
Google scholar
|
[43] |
Zhang Z , Li S , Mi B , Wang J , Ding J . (2020b). Surface slip on rotating graphene membrane enables the temporal selectivity that breaks the permeability-selectivity trade-off. Science Advances, 6( 34): eaba9471
CrossRef
Pubmed
Google scholar
|
[44] |
Zhao X T , Zhang R N , Liu Y N , He M R , Su Y L , Gao C J , Jiang Z Y . (2018). Antifouling membrane surface construction: chemistry plays a critical role. Journal of Membrane Science, 551 : 145– 171
CrossRef
Google scholar
|
[45] |
Zhao Y , Zhao Y , Yu X , Kong D , Fan X , Wang R , Luo S , Lu D , Nan J , Ma J . (2022). Peracetic acid integrated catalytic ceramic membrane filtration for enhanced membrane fouling control: performance evaluation and mechanism analysis. Water Research, 220 : 118710
CrossRef
Pubmed
Google scholar
|
[46] |
Zhu K , Luo Y , Zhao F , Hou J , Wang X , Ma H , Wu H , Zhang Y , Jiang K , Fan S , Wang J , Liu K . (2018). Free-standing, binder-free titania/super-aligned carbon nanotube anodes for flexible and fast-charging Li-ion batteries. ACS Sustainable Chemistry & Engineering, 6( 3): 3426– 3433
CrossRef
Google scholar
|
[47] |
Zhu Z , Zheng S , Peng S , Zhao Y , Tian Y . (2017). Superlyophilic interfaces and their applications. Advanced Materials, 29( 45): 1703120
CrossRef
Pubmed
Google scholar
|
[48] |
Zin G , Wu J J , Rezzadori K , Petrus J C C , Di Luccio M , Li Q L . (2019). Modification of hydrophobic commercial PVDF microfiltration membranes into superhydrophilic membranes by the mussel-inspired method with dopamine and polyethyleneimine. Separation and Purification Technology, 212 : 641– 649
CrossRef
Google scholar
|
/
〈 | 〉 |