Front. Environ. Sci. Eng. All Journals
REVIEW ARTICLE

Recent advances in electrochemical decontamination of perfluorinated compounds from water: a review

  • Fuqiang Liu 1 ,
  • Shengtao Jiang 2 ,
  • Shijie You , 3 ,
  • Yanbiao Liu , 1
Expand
  • 1. College of Environmental Science and Engineering, Textile Pollution Controlling Engineering Center of the Ministry of Ecology and Environment, Donghua University, Shanghai 201620, China
  • 2. College of Life Science, Taizhou University, Taizhou 318000, China
  • 3. State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China

Received date: 15 May 2022

Revised date: 17 Jul 2022

Accepted date: 26 Jul 2022

Published date: 15 Feb 2023

Copyright

2023 Higher Education Press

Highlights

● Recent advances in the electrochemical decontamination of PFAS are reviewed.

● Underlying mechanisms and impacting factors of these processes are discussed.

● Several novel couped systems and electrode materials are emphasized.

● Major knowledge gaps and research prospects on PFAS removal are identified.

Abstract

Per- and polyfluoroalkyl substances (PFAS) pose serious human health and environmental risks due to their persistence and toxicity. Among the available PFAS remediation options, the electrochemical approach is promising with better control. In this review, recent advances in the decontamination of PFAS from water using several state-of-the-art electrochemical strategies, including electro-oxidation, electro-adsorption, and electro-coagulation, were systematically reviewed. We aimed to elucidate their design principles, underlying working mechanisms, and the effects of operation factors (e.g., solution pH, applied voltage, and reactor configuration). The recent developments of innovative electrochemical systems and novel electrode materials were highlighted. In addition, the development of coupled processes that could overcome the shortcomings of low efficiency and high energy consumption of conventional electrochemical systems was also emphasized. This review identified several major knowledge gaps and challenges in the scalability and adaptability of efficient electrochemical systems for PFAS remediation. Materials science and system design developments are forging a path toward sustainable treatment of PFAS-contaminated water through electrochemical technologies.

Cite this article

Fuqiang Liu, Shengtao Jiang, Shijie You, Yanbiao Liu. Recent advances in electrochemical decontamination of perfluorinated compounds from water: a review[J]. Frontiers of Environmental Science & Engineering, 2023, 17(2): 18. DOI: 10.1007/s11783-023-1618-z

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52170068 and U21A20161) and the Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (No. QAK202108).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11783-023-1618-z and is accessible for authorized users.
1
Amani-Ghadim A R , Aber S , Olad A , Ashassi-Sorkhabi H . (2011). Influence of anions on Reactive Red 43 removal in electrochemical coagulation process. Electrochimica Acta, 56( 3): 1373– 1380

DOI

2
Azizi O , Hubler D , Schrader G , Farrell J , Chaplin B P . (2011). Mechanism of perchlorate formation on boron-doped diamond film anodes. Environmental Science & Technology, 45( 24): 10582– 10590

DOI PMID

3
Bao J , Yu W J , Liu Y , Wang X , Liu Z Q , Duan Y F . (2020). Removal of perfluoroalkanesulfonic acids (PFSAs) from synthetic and natural groundwater by electrocoagulation. Chemosphere, 248 : 125951

DOI PMID

4
Barisci S , Suri R . (2020). Electrooxidation of short and long chain perfluorocarboxylic acids using boron doped diamond electrodes. Chemosphere, 243 : 125349

DOI PMID

5
Barisci S , Suri R . (2021). Electrooxidation of short- and long-chain perfluoroalkyl substances (PFASs) under different process conditions. Journal of Environmental Chemical Engineering, 9( 4): 105323

DOI

6
Bayram E , Ayranci E . (2010). Electrochemically enhanced removal of polycyclic aromatic basic dyes from dilute aqueous solutions by activated carbon cloth electrodes. Environmental Science & Technology, 44( 16): 6331– 6336

DOI PMID

7
Bejan D , Guinea E , Bunce N J . (2012). On the nature of the hydroxyl radicals produced at boron-doped diamond and Ebonex (R) anodes. Electrochimica Acta, 69 : 275– 281

DOI

8
Benhadji A, Taleb Ahmed M, Maachi R ( 2011). Electrocoagulation and effect of cathode materials on the removal of pollutants from tannery wastewater of Rouiba. Desalination, 277( 1– 3): 128– 134

DOI

9
Bentel M J , Yu Y , Xu L , Li Z , Wong B M , Men Y , Liu J . (2019). Defluorination of per- and polyfluoroalkyl substances (PFASs) with hydrated electrons: Structural dependence and implications to PFAS remediation and management. Environmental Science & Technology, 53( 7): 3718– 3728

DOI PMID

10
Brillas E, Martinez-Huitle C A ( 2015). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 166– 167: 603– 643

DOI

11
Carter K E , Farrell J . (2008). Oxidative destruction of perfluorooctane sulfonate using boron-doped diamond film electrodes. Environmental Science & Technology, 42( 16): 6111– 6115

DOI PMID

12
Chaplin B P . (2014). Critical review of electrochemical advanced oxidation processes for water treatment applications. Environmental Science. Processes & Impacts, 16( 6): 1182– 1203

DOI PMID

13
Chaplin B P . (2019). The prospect of electrochemical technologies advancing worldwide water treatment. Accounts of Chemical Research, 52( 3): 596– 604

DOI PMID

14
Du Z , Deng S , Bei Y , Huang Q , Wang B , Huang J , Yu G . (2014). Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents-a review. Journal of Hazardous Materials, 274 : 443– 454

DOI PMID

15
Duan X , Wang W , Wang Q , Sui X , Li N , Chang L . (2020). Electrocatalytic degradation of perfluoroocatane sulfonate (PFOS) on a 3D graphene-lead dioxide (3DG-PbO2) composite anode: electrode characterization, degradation mechanism and toxicity. Chemosphere, 260 : 127587

DOI PMID

16
Duinslaeger N , Radjenovic J . (2022). Electrochemical degradation of per- and polyfluoroalkyl substances (PFAS) using low-cost graphene sponge electrodes. Water Research, 213 : 118148

DOI PMID

17
Fajardo A S , Rodrigues R F , Martins R C , Castro L M , Quinta-Ferreira R M . (2015). Phenolic wastewaters treatment by electrocoagulation process using Zn anode. Chemical Engineering Journal, 275 : 331– 341

DOI

18
Gao X D , Chorover J . (2012). Adsorption of perfluorooctanoic acid and perfluorooctanesulfonic acid to iron oxide surfaces as studied by flow-through ATR-FTIR spectroscopy. Environmental Chemistry, 9( 2): 148– 157

DOI

19
Geng P , Su J Y , Miles C , Comninellis C , Chen G H . (2015). Highly-ordered magneli Ti4O7 nanotube arrays as effective anodic material for electro-oxidation. Electrochimica Acta, 153 : 316– 324

DOI

20
Giesy J P , Kannan K . (2001). Global distribution of perfluorooctane sulfonate in wildlife. Environmental Science & Technology, 35( 7): 1339– 1342

DOI PMID

21
Giesy J P , Kannan K . (2002). Perfluorochemical surfactants in the environment. Environmental Science & Technology, 36( 7): 146A– 152A

DOI PMID

22
Golder A K , Samanta A N , Ray S . (2006). Removal of phosphate from aqueous solutions using calcined metal hydroxides sludge waste generated from electrocoagulation. Separation and Purification Technology, 52( 1): 102– 109

DOI

23
Grandjean P . (2018). Delayed discovery, dissemination, and decisions on intervention in environmental health: a case study on immunotoxicity of perfluorinated alkylate substances. Environmental Health, 17( 1): 62

DOI PMID

24
Haro M , Rasines G , Macias C , Ania C O . (2011). Stability of a carbon gel electrode when used for the electro-assisted removal of ions from brackish water. Carbon, 49( 12): 3723– 3730

DOI

25
He H , Yu Q J , Lai C C , Zhang C , Liu M H , Huang B , Pu H P , Pan X J . (2021). The treatment of black-odorous water using tower bipolar electro-flocculation including the removal of phosphorus, turbidity, sulfion, and oxygen enrichment. Frontiers of Environmental Science & Engineering, 15( 2): 18

DOI

26
Hogue C . (2019). Governments endorse global PFOA ban, with some exemptions. Chemical and Engineering News, 97( 19): 5– 5

27
Houde M , Martin J W , Letcher R J , Solomon K R , Muir D C G . (2006). Biological monitoring of polyfluoroalkyl substances: a review. Environmental Science & Technology, 40( 11): 3463– 3473

DOI PMID

28
Huang D , Wang K , Niu J , Chu C , Weon S , Zhu Q , Lu J , Stavitski E , Kim J H . (2020). Amorphous Pd-loaded Ti4O7 electrode for direct anodic destruction of perfluorooctanoic acid. Environmental Science & Technology, 54( 17): 10954– 10963

DOI PMID

29
Huang S Y , Fan C S , Hou C H . (2014). Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization. Journal of Hazardous Materials, 278 : 8– 15

DOI PMID

30
Hwang J H , Li Sip Y Y , Kim K T , Han G , Rodriguez K L , Fox D W , Afrin S , Burnstine-Townley A , Zhai L , Lee W H . (2022). Nanoparticle-embedded hydrogel synthesized electrodes for electrochemical oxidation of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). Chemosphere, 296 : 134001

DOI PMID

31
Kelly B C , Ikonomou M G , Blair J D , Surridge B , Hoover D , Grace R , Gobas F A . (2009). Perfluoroalkyl contaminants in an Arctic marine food web: trophic magnification and wildlife exposure. Environmental Science & Technology, 43( 11): 4037– 4043

DOI PMID

32
Key B D , Howell R D , Criddle C S . (1997). Fluorinated organics in the biosphere. Environmental Science & Technology, 31( 9): 2445– 2454

DOI

33
Khalid Y S , Misal S N , Mehraeen S , Chaplin B P . (2022). Reactive-transport modeling of electrochemical oxidation of perfluoroalkyl substances in porous flow-through electrodes. ACS ES&T Engineering, 2( 4): 713– 725

34
Khandegar V , Saroha A K . (2013). Electrocoagulation for the treatment of textile industry effluent-a review. Journal of Environmental Management, 128 : 949– 963

DOI PMID

35
Kim K , Baldaguez Medina P , Elbert J , Kayiwa E , Cusick R D , Men Y J , Su X . (2020a). Molecular tuning of redox-copolymers for selective electrochemical remediation. Advanced Functional Materials, 30( 52): 2004635

DOI

36
Kim M K , Kim T , Kim T K , Joo S W , Zoh K D . (2020b). Degradation mechanism of perfluorooctanoic acid (PFOA) during electrocoagulation using Fe electrode. Separation and Purification Technology, 247 : 116911

DOI

37
Lacasa E , Canizares P , Saez C , Fernandez F J , Rodrigo M A . (2011). Removal of nitrates from groundwater by electrocoagulation. Chemical Engineering Journal, 171( 3): 1012– 1017

DOI

38
Le T X H , Haflich H , Shah A D , Chaplin B P . (2019). Energy-efficient electrochemical oxidation of perfluoroalkyl substances using a Ti4O7 reactive electrochemical membrane anode. Environmental Science & Technology Letters, 6( 8): 504– 510

DOI

39
Li L , Wang Y Y , Huang Q G . (2021a). First-principles study of the degradation of perfluorooctanesulfonate and perfluorobutanesulfonate on a Magneli phase Ti4O7 anode. ACS ES&T Water, 1( 8): 1737– 1744

DOI

40
Li M , Jin Y T , Yan J F , Liu Z , Feng N X , Han W , Huang L W , Li Q K , Yeung K L , Zhou S Q , Mo C H . (2022a). Exploration of perfluorooctane sulfonate degradation properties and mechanism via electron-transfer dominated radical process. Water Research, 215 : 118259

DOI PMID

41
Li M , Mo C H , Luo X , He K Y , Yan J F , Wu Q , Yu P F , Han W , Feng N X , Yeung K L , Zhou S Q . (2021b). Exploring key reaction sites and deep degradation mechanism of perfluorooctane sulfonate via peroxymonosulfate activation under electrocoagulation process. Water Research, 207 : 117849

DOI PMID

42
Li X , Chen S , Quan X , Zhang Y . (2011). Enhanced adsorption of PFOA and PFOS on multiwalled carbon nanotubes under electrochemical assistance. Environmental Science & Technology, 45( 19): 8498– 8505

DOI PMID

43
Li Y F, Hu C Y, Lee Y C, Lo S L ( 2022b). Effects of zinc salt addition on perfluorooctanoic acid (PFOA) removal by electrocoagulation with aluminum electrodes. Chemosphere, 288( Pt 3): 132665

DOI PMID

44
Liang Q J , Gao Y , Li Z G , Cai J Y , Chu N , Hao W , Jiang Y , Zeng R J X . (2022a). Electricity-driven ammonia oxidation and acetate production in microbial electrosynthesis systems. Frontiers of Environmental Science & Engineering, 16( 4): 42

DOI

45
Liang S T , Mora R , Huang Q G , Casson R , Wang Y Y , Woodard S , Anderson H . (2022b). Field demonstration of coupling ion-exchange resin with electrochemical oxidation for enhanced treatment of per- and polyfluoroalkyl substances (PFAS) in groundwater. Chemical Engineering Journal Advances, 9 : 100216

DOI

46
Liang S T , Pierce R Jr , Lin H , Chiang S Y , Huang Q . (2018). Electrochemical oxidation of PFOA and PFOS in concentrated waste streams. Remediation Journal, 28( 2): 127– 134

DOI

47
Lin H , Niu J , Ding S , Zhang L . (2012). Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2 and Ti/SnO2-Sb/MnO2 anodes. Water Research, 46( 7): 2281– 2289

DOI PMID

48
Lin H , Niu J F , Liang S T , Wang C , Wang Y J , Jin F Y , Luo Q , Huang Q G . (2018). Development of macroporous Magneli phase Ti4O7 ceramic materials: As an efficient anode for mineralization of poly- and perfluoroalkyl substances. Chemical Engineering Journal, 354 : 1058– 1067

DOI

49
Lin H , Niu J F , Xu J L , Li Y , Pan Y H . (2013). Electrochemical mineralization of sulfamethoxazole by Ti/SnO2-Sb/Ce-PbO2 anode: Kinetics, reaction pathways, and energy cost evolution. Electrochimica Acta, 97 : 167– 174

DOI

50
Lin H , Wang Y , Niu J , Yue Z , Huang Q . (2015). Efficient sorption and removal of perfluoroalkyl acids (PFAAs) from aqueous solution by metal hydroxides generated in situ by electrocoagulation. Environmental Science & Technology, 49( 17): 10562– 10569

DOI PMID

51
Lin H , Xiao R , Xie R , Yang L , Tang C , Wang R , Chen J , Lv S , Huang Q . (2021). Defect engineering on a Ti4O7 electrode by Ce3+ doping for the efficient electrooxidation of perfluorooctanesulfonate. Environmental Science & Technology, 55( 4): 2597– 2607

DOI PMID

52
Lin M H , Mehraeen S , Cheng G , Rusinek C , Chaplin B P . (2020). Role of near-electrode solution chemistry on bacteria attachment and poration at low applied potentials. Environmental Science & Technology, 54( 1): 446– 455

DOI PMID

53
Lindstrom A B , Strynar M J , Libelo E L . (2011). Polyfluorinated compounds: past, present, and future. Environmental Science & Technology, 45( 19): 7954– 7961

DOI PMID

54
Liu G S , Zhou H , Teng J , You S J . (2019a). Electrochemical degradation of perfluorooctanoic acid by macro- porous titanium suboxide anode in the presence of sulfate. Chemical Engineering Journal, 371 : 7– 14

DOI

55
Liu L , Li D , Li C , Ji R , Tian X . (2018a). Metal nanoparticles by doping carbon nanotubes improved the sorption of perfluorooctanoic acid. Journal of Hazardous Materials, 351 : 206– 214

DOI PMID

56
Liu L , Liu Y , Che N , Gao B , Li C . (2021a). Electrochemical adsorption of perfluorooctanoic acid on a novel reduced graphene oxide aerogel loaded with Cu nanoparticles and fluorine. Journal of Hazardous Materials, 416 : 125866

DOI PMID

57
Liu L Q , Qu Y X , Huang J , Weber R . (2021b). Per- and polyfluoroalkyl substances (PFASs) in Chinese drinking water: Risk assessment and geographical distribution. Environmental Sciences Europe, 33( 1): 6

DOI

58
Liu Y , Chen S , Quan X , Yu H , Zhao H , Zhang Y . (2015). Efficient mineralization of perfluorooctanoate by electro-Fenton with H2O2 electro-generated on hierarchically porous carbon. Environmental Science & Technology, 49( 22): 13528– 13533

DOI PMID

59
Liu Y , Fan X , Quan X , Fan Y , Chen S , Zhao X . (2019b). Enhanced perfluorooctanoic acid degradation by electrochemical activation of sulfate solution on B/N codoped diamond. Environmental Science & Technology, 53( 9): 5195– 5201

DOI PMID

60
Liu Y , Gao G , Vecitis C D . (2020). Prospects of an electroactive carbon nanotube membrane toward environmental applications. Accounts of Chemical Research, 53( 12): 2892– 2902

DOI PMID

61
Liu Y , Hu X M , Zhao Y , Wang J , Lu M X , Peng F H , Bao J . (2018b). Removal of perfluorooctanoic acid in simulated and natural waters with different electrode materials by electrocoagulation. Chemosphere, 201 : 303– 309

DOI PMID

62
Lu D , Sha S , Luo J , Huang Z , Zhang Jackie X . (2020). Treatment train approaches for the remediation of per- and polyfluoroalkyl substances (PFAS): a critical review. Journal of Hazardous Materials, 386 : 121963

DOI PMID

63
Luo G M , Wang Y Z , Gao L X , Zhang D Q , Lin T . (2018). Graphene bonded carbon nanofiber aerogels with high capacitive deionization capability. Electrochimica Acta, 260 : 656– 663

DOI

64
Ma C Y , Huang S C , Chou P H , Den W , Hou C H . (2016). Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification. Chemosphere, 146 : 113– 120

DOI PMID

65
Maldonado V Y , Becker M F , Nickelsen M G , Witt S E . (2021). Laboratory and semi-pilot scale study on the electrochemical treatment of perfluoroalkyl acids from ion exchange still bottoms. Water, 13( 20): 2873

DOI

66
Martínez-Huitle C A , Rodrigo M A , Sirés I , Scialdone O . (2015). Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chemical Reviews, 115( 24): 13362– 13407

DOI PMID

67
Baldaguez Medina P , Cotty S , Kim K , Elbert J , Su X . (2021). Emerging investigator series: electrochemically-mediated remediation of GenX using redox-copolymers. Environmental Science: Water Research & Technology, 7( 12): 2231– 2240

DOI

68
Mollah MYA, Morkovsky P, Gomes JAG, Kesmez M, Parga J, Cocke DL ( 2004). Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 114( 1– 3): 199– 210

DOI PMID

69
Mu T , Park M , Kim K Y . (2021). Energy-efficient removal of PFOA and PFOS in water using electrocoagulation with an air-cathode. Chemosphere, 281 : 130956

DOI PMID

70
Nienhauser A B , Ersan M S , Lin Z H , Perreault F , Westerhoff P , Garcia-Segura S . (2022). Boron-doped diamond electrodes degrade short- and long-chain per- and polyfluorinated alkyl substances in real industrial wastewaters. Journal of Environmental Chemical Engineering, 10( 2): 107192

DOI

71
Niu J , Li Y , Shang E , Xu Z , Liu J . (2016). Electrochemical oxidation of perfluorinated compounds in water. Chemosphere, 146 : 526– 538

DOI PMID

72
Niu J , Lin H , Gong C , Sun X . (2013). Theoretical and experimental insights into the electrochemical mineralization mechanism of perfluorooctanoic acid. Environmental Science & Technology, 47( 24): 14341– 14349

DOI PMID

73
Niu J , Lin H , Xu J , Wu H , Li Y . (2012). Electrochemical mineralization of perfluorocarboxylic acids (PFCAs) by Ce-doped modified porous nanocrystalline PbO2 film electrode. Environmental Science & Technology, 46( 18): 10191– 10198

DOI PMID

74
Niu Z J , Wang Y J , Lin H , Jin F Y , Li Y , Niu J F . (2017). Electrochemically enhanced removal of perfluorinated compounds (PFCs) from aqueous solution by CNTs-graphene composite electrode. Chemical Engineering Journal, 328 : 228– 235

DOI

75
Nunes S P ( 2020). Can fouling in membranes be ever defeated? Current Opinion in Chemical Engineering, 28: 90– 95

DOI

76
Nzeribe N , Crimi M , Mededovic Thagard S , Holsen T M . (2019). Physico-chemical processes for the treatment of per- and polyfluoroalkyl substances (PFAS): a review blossom. Critical Reviews in Environmental Science and Technology, 49( 10): 866– 915

DOI

77
Opoku-Duah S , Johnson D . (2020). Removal of perfluorooctanoic acid and microcystins from drinking water by electrocoagulation. Journal of Chemistry, 2020 : 1836264

DOI

78
Pica N E , Funkhouser J , Yin Y , Zhang Z , Ceres D M , Tong T , Blotevogel J . (2019). Electrochemical oxidation of hexafluoropropylene oxide dimer acid (GenX): mechanistic insights and efficient treatment train with nanofiltration. Environmental Science & Technology, 53( 21): 12602– 12609

DOI PMID

79
Pierpaoli M , Szopińska M , Wilk B K , Sobaszek M , Łuczkiewicz A , Bogdanowicz R , Fudala-Książek S . (2021). Electrochemical oxidation of PFOA and PFOS in landfill leachates at low and highly boron-doped diamond electrodes. Journal of Hazardous Materials, 403 : 123606

DOI PMID

80
Qi Z L , You S J , Liu R B , Chuah C J . (2020). Performance and mechanistic study on electrocoagulation process for municipal wastewater treatment based on horizontal bipolar electrodes. Frontiers of Environmental Science & Engineering, 14( 3): 40

DOI

81
Quan Q , Wen H , Han S , Wang Z , Shao Z , Chen M . (2020). Fluorous-core nanoparticle-embedded hydrogel synthesized via tandem photo-controlled radical polymerization: facilitating the separation of perfluorinated alkyl substances from water. ACS Applied Materials & Interfaces, 12( 21): 24319– 24327

DOI PMID

82
Radjenovic J, Duinslaeger N, Avval S S, Chaplin B P ( 2020). Facing the challenge of poly- and perfluoroalkyl substances in water: Is electrochemical oxidation the answer? Environmental Science & Technology, 54( 23): 14815– 14829

DOI PMID

83
Rahman M F , Peldszus S , Anderson W B . (2014). Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review. Water Research, 50 : 318– 340

DOI PMID

84
Ren Y F , Zheng W T , Duan X G , Goswami N , Liu Y B . (2022). Recent advances in electrochemical removal and recovery of phosphorus from water: a review. Environmental Functional Materials, 1( 1): 10– 20

DOI

85
Saeidi N , Kopinke F D , Georgi A . (2021). Controlling adsorption of perfluoroalkyl acids on activated carbon felt by means of electrical potentials. Chemical Engineering Journal, 416 : 129070

DOI

86
Santos D , Lopes A , Pacheco M J , Gomes A , Ciriaco L . (2014). The oxygen evolution reaction at Sn-Sb oxide anodes: influence of the oxide preparation mode. Journal of the Electrochemical Society, 161( 9): H564– H572

DOI

87
Sharma S , Shetti N P , Basu S , Nadagouda M N , Aminabhavi T M . (2022). Remediation of per- and polyfluoroalkyls (PFAS) via electrochemical methods. Chemical Engineering Journal, 430 : 132895

DOI

88
Shen Z C , Zhan L , Xu Z M . (2022). Thermal defluorination behaviors of PFOS, PFOA and PFBS during regeneration of activated carbon by molten salt. Frontiers of Environmental Science & Engineering, 16( 8): 103

DOI

89
Shi H , Chiang S D , Wang Y , Wang Y , Liang S , Zhou J , Fontanez R , Gao S , Huang Q . (2021). An electrocoagulation and electrooxidation treatment train to remove and degrade per- and polyfluoroalkyl substances in aqueous solution. Science of the Total Environment, 788 : 147723

DOI PMID

90
Shi H , Wang Y , Li C , Pierce R , Gao S , Huang Q . (2019). Degradation of perfluorooctanesulfonate by reactive electrochemical membrane composed of Magnéli phase titanium suboxide. Environmental Science & Technology, 53( 24): 14528– 14537

DOI PMID

91
Shrestha B , Ezazi M , Ajayan S , Kwon G . (2021). Reversible adsorption and desorption of PFAS on inexpensive graphite adsorbents via alternating electric field. RSC Advances, 11( 55): 34652– 34659

DOI PMID

92
Si Y X , Zhang F , Hong C , Li G H , Zhang H C , Liu D . (2021). Effect of current density on groundwater arsenite removal performance using air cathode electrocoagulation. Frontiers of Environmental Science & Engineering, 15( 6): 112

DOI

93
Song S , Fan J Q , He Z Q , Zhan L Y , Liu Z W , Chen J M , Xu X H . (2010). Electrochemical degradation of azo dye CI reactive red 195 by anodic oxidation on Ti/SnO2-Sb/PbO2 electrodes. Electrochimica Acta, 55( 11): 3606– 3613

DOI

94
Soriano Á , Gorri D , Urtiaga A . (2017). Efficient treatment of perfluorohexanoic acid by nanofiltration followed by electrochemical degradation of the NF concentrate. Water Research, 112 : 147– 156

DOI PMID

95
Soriano A , Gorri D , Urtiaga A . (2019). Membrane preconcentration as an efficient tool to reduce the energy consumption of perfluorohexanoic acid electrochemical treatment. Separation and Purification Technology, 208 : 160– 168

DOI

96
Soriano A , Schaefer C , Urtiaga A . (2020). Enhanced treatment of perfluoroalkyl acids in groundwater by membrane separation and electrochemical oxidation. Chemical Engineering Journal Advances, 4 : 100042

DOI

97
Steenland K , Fletcher T , Savitz D A . (2010). Epidemiologic evidence on the health effects of perfluorooctanoic acid (PFOA). Environmental Health Perspectives, 118( 8): 1100– 1108

DOI PMID

98
Taves D R . (1968). Evidence that there are two forms of fluoride in human serum. Nature, 217( 5133): 1050– 1051

DOI PMID

99
Tian Y H , Xing J Y , Huyan C X , Zhu C Z , Du D , Zhu W L , Lin Y H , Chowdhury I . (2021). Electrically controlled anion exchange based on a polypyrrole/carbon cloth composite for the removal of perfluorooctanoic acid. ACS ES&T Water, 1( 12): 2504– 2512

DOI

100
Trautmann A M , Schell H , Schmidt K R , Mangold K M , Tiehm A . (2015). Electrochemical degradation of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in groundwater. Water Science and Technology, 71( 10): 1569– 1575

DOI PMID

101
Trojanowicz M , Bojanowska-Czajka A , Bartosiewicz I , Kulisa K . (2018). Advanced oxidation/reduction processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS): a review of recent advances. Chemical Engineering Journal, 336 : 170– 199

DOI

102
Uwayezu J N , Carabante I , Lejon T , van Hees P , Karlsson P , Hollman P , Kumpiene J . (2021). Electrochemical degradation of per- and poly-fluoroalkyl substances using boron-doped diamond electrodes. Journal of Environmental Management, 290 : 112573

DOI PMID

103
van Genuchten C M , Addy S E A , Peña J , Gadgil A J . (2012). Removing arsenic from synthetic groundwater with iron electrocoagulation: an Fe and As K-edge EXAFS study. Environmental Science & Technology, 46( 2): 986– 994

DOI PMID

104
Veciana M , Bräunig J , Farhat A , Pype M L , Freguia S , Carvalho G , Keller J , Ledezma P . (2022). Electrochemical oxidation processes for PFAS removal from contaminated water and wastewater: fundamentals, gaps and opportunities towards practical implementation. Journal of Hazardous Materials, 434 : 128886

DOI PMID

105
Wang P , Zhang M , Li Q , Lu Y . (2021). Atmospheric diffusion of perfluoroalkyl acids emitted from fluorochemical industry and its associated health risks. Environment International, 146 : 106247

DOI PMID

106
Wang Q N , Liu M Y , Zhao H Y , Chen Y , Xiao F , Chu W H , Zhao G H . (2019a). Efficiently degradation of perfluorooctanoic acid in synergic electrochemical process combining cathodic electro-Fenton and anodic oxidation. Chemical Engineering Journal, 378 : 122071

DOI

107
Wang S Y , Li X N , Zhang Y B , Quan X , Chen S , Yu H T , Zhao H M . (2014a). Electrochemically enhanced adsorption of PFOA and PFOS on multiwalled carbon nanotubes in continuous flow mode. Chinese Science Bulletin, 59( 23): 2890– 2897

DOI

108
Wang X Y , Xie Y , Yang G Z , Hao J M , Ma J , Ning P . (2020a). Enhancement of the electrocatalytic oxidation of antibiotic wastewater over the conductive black carbon-PbO2 electrode prepared using novel green approach. Frontiers of Environmental Science & Engineering, 14( 2): 22

DOI

109
Wang Y , Lin H , Jin F , Niu J , Zhao J , Bi Y , Li Y . (2016). Electrocoagulation mechanism of perfluorooctanoate (PFOA) on a zinc anode: influence of cathodes and anions. Science of the Total Environment, 557-558 : 542– 550

DOI PMID

110
Wang Y Y , Li L , Wang Y F , Shi H H , Wang L , Huang Q G . (2022). Electrooxidation of perfluorooctanesulfonic acid on porous Magnéli phase titanium suboxide anodes: impact of porous structure and composition. Chemical Engineering Journal, 431 : 133929

DOI

111
Wang Y Y , Pierce R , Shi H H , Li C G , Huang Q G . (2020b). Electrochemical degradation of perfluoroalkyl acids by titanium suboxide anodes. Environmental Science: Water Research & Technology, 6( 1): 144– 152

DOI

112
Wang Z , Cousins I T , Scheringer M , Buck R C , Hungerbühler K . (2014b). Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: production and emissions from quantifiable sources. Environment International, 70 : 62– 75

DOI PMID

113
Wu M S , Liao T L , Wang Y Y , Wan C C . (2004). Assessment of the wettability of porous electrodes for lithium-ion batteries. Journal of Applied Electrochemistry, 34( 8): 797– 805

DOI

114
Xie J , Zhang C , David Waite T . (2022). Integrated flow anodic oxidation and ultrafiltration system for continuous defluorination of perfluorooctanoic acid (PFOA). Water Research, 216 : 118319

DOI PMID

115
Xu L , Qian X B , Wang K X , Fang C , Niu J F . (2020). Electrochemical mineralization mechanisms of perfluorooctanoic acid in water assisted by low frequency ultrasound. Journal of Cleaner Production, 263 : 121546

DOI

116
Xu Z , Yu Y , Liu H , Niu J . (2017). Highly efficient and stable Zr-doped nanocrystalline PbO2 electrode for mineralization of perfluorooctanoic acid in a sequential treatment system. Science of the Total Environment, 579 : 1600– 1607

DOI PMID

117
Yang B , Han Y N , Yu G , Zhuo Q F , Deng S B , Wu J H , Zhang P X . (2016). Efficient removal of perfluoroalkyl acids (PFAAs) from aqueous solution by electrocoagulation using iron electrode. Chemical Engineering Journal, 303 : 384– 390

DOI

118
Yang B , Jiang C , Yu G , Zhuo Q , Deng S , Wu J , Zhang H . (2015). Highly efficient electrochemical degradation of perfluorooctanoic acid (PFOA) by F-doped Ti/SnO2 electrode. Journal of Hazardous Materials, 299 : 417– 424

DOI PMID

119
Yang L , He L , Xue J , Ma Y , Xie Z , Wu L , Huang M , Zhang Z . (2020). Persulfate-based degradation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in aqueous solution: Review on influences, mechanisms and prospective. Journal of Hazardous Materials, 393 : 122405

DOI PMID

120
Yang L H, Yang W J, Lv S H, Zhu T T, Adeel Sharif H M, Yang C, Du J, Lin H ( 2022). Is HFPO-DA (GenX) a suitable substitute for PFOA? A comprehensive degradation comparison of PFOA and GenX via electrooxidation. Environmental Research, 204(Pt A): 111995

DOI PMID

121
Yang S S , Fernando S , Holsen T M , Yang Y . (2019). Inhibition of perchlorate formation during the electrochemical oxidation of perfluoroalkyl acid in groundwater. Environmental Science & Technology Letters, 6( 12): 775– 780

DOI PMID

122
You S J , Liu B , Gao Y F , Wang Y , Tang C Y Y , Huang Y B , Ren N Q . (2016). Monolithic porous magneli-phase Ti4O7 for electro-oxidation treatment of industrial wastewater. Electrochimica Acta, 214 : 326– 335

DOI

123
Zhao H Y, Gao J X, Zhao G H, Fan J Q, Wang Y B, Wang Y J ( 2013). Fabrication of novel SnO 2 -Sb/carbon aerogel electrode for ultrasonic electrochemical oxidation of perfluorooctanoate with high catalytic efficiency. Applied Catalysis B: Environmental, 136– 137: 278– 286

DOI

124
Zhong C Q , Wei K J , Han W Q , Wang L J , Sun X Y , Li J S . (2013). Electrochemical degradation of tricyclazole in aqueous solution using Ti/SnO2-Sb/PbO2 anode. Journal of Electroanalytical Chemistry, 705 : 68– 74

DOI

125
Zhuo Q , Deng S , Yang B , Huang J , Yu G . (2011). Efficient electrochemical oxidation of perfluorooctanoate using a Ti/SnO2-Sb-Bi anode. Environmental Science & Technology, 45( 7): 2973– 2979

DOI PMID

126
Zhuo Q , Li X , Yan F , Yang B , Deng S , Huang J , Yu G . (2014). Electrochemical oxidation of 1H,1H,2H,2H-perfluorooctane sulfonic acid (6:2 FTS) on DSA electrode: operating parameters and mechanism. Journal of Environmental Sciences (China), 26( 8): 1733– 1739

DOI PMID

127
Zhuo Q F , Deng S B , Yang B , Huang J , Wang B , Zhang T T , Yu G . (2012). Degradation of perfluorinated compounds on a boron-doped diamond electrode. Electrochimica Acta, 77 : 17– 22

DOI

128
Zhuo Q F , Luo M Q , Guo Q W , Yu G , Deng S B , Xu Z C , Yang B , Liang X L . (2016). Electrochemical oxidation of environmentally persistent perfluorooctane sulfonate by a novel Lead dioxide anode. Electrochimica Acta, 213 : 358– 367

DOI

/