Recent advances in electrochemical decontamination of perfluorinated compounds from water: a review

Fuqiang Liu, Shengtao Jiang, Shijie You, Yanbiao Liu

PDF(8396 KB)
PDF(8396 KB)
Front. Environ. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (2) : 18. DOI: 10.1007/s11783-023-1618-z
REVIEW ARTICLE
REVIEW ARTICLE

Recent advances in electrochemical decontamination of perfluorinated compounds from water: a review

Author information +
History +

Highlights

● Recent advances in the electrochemical decontamination of PFAS are reviewed.

● Underlying mechanisms and impacting factors of these processes are discussed.

● Several novel couped systems and electrode materials are emphasized.

● Major knowledge gaps and research prospects on PFAS removal are identified.

Abstract

Per- and polyfluoroalkyl substances (PFAS) pose serious human health and environmental risks due to their persistence and toxicity. Among the available PFAS remediation options, the electrochemical approach is promising with better control. In this review, recent advances in the decontamination of PFAS from water using several state-of-the-art electrochemical strategies, including electro-oxidation, electro-adsorption, and electro-coagulation, were systematically reviewed. We aimed to elucidate their design principles, underlying working mechanisms, and the effects of operation factors (e.g., solution pH, applied voltage, and reactor configuration). The recent developments of innovative electrochemical systems and novel electrode materials were highlighted. In addition, the development of coupled processes that could overcome the shortcomings of low efficiency and high energy consumption of conventional electrochemical systems was also emphasized. This review identified several major knowledge gaps and challenges in the scalability and adaptability of efficient electrochemical systems for PFAS remediation. Materials science and system design developments are forging a path toward sustainable treatment of PFAS-contaminated water through electrochemical technologies.

Graphical abstract

Keywords

Perfluorinated compounds / Electrochemical approach / Working mechanisms / Impacting factor / Coupled process

Cite this article

Download citation ▾
Fuqiang Liu, Shengtao Jiang, Shijie You, Yanbiao Liu. Recent advances in electrochemical decontamination of perfluorinated compounds from water: a review. Front. Environ. Sci. Eng., 2023, 17(2): 18 https://doi.org/10.1007/s11783-023-1618-z

References

[1]
Amani-Ghadim A R , Aber S , Olad A , Ashassi-Sorkhabi H . (2011). Influence of anions on Reactive Red 43 removal in electrochemical coagulation process. Electrochimica Acta, 56( 3): 1373– 1380
CrossRef Google scholar
[2]
Azizi O , Hubler D , Schrader G , Farrell J , Chaplin B P . (2011). Mechanism of perchlorate formation on boron-doped diamond film anodes. Environmental Science & Technology, 45( 24): 10582– 10590
CrossRef Pubmed Google scholar
[3]
Bao J , Yu W J , Liu Y , Wang X , Liu Z Q , Duan Y F . (2020). Removal of perfluoroalkanesulfonic acids (PFSAs) from synthetic and natural groundwater by electrocoagulation. Chemosphere, 248 : 125951
CrossRef Pubmed Google scholar
[4]
Barisci S , Suri R . (2020). Electrooxidation of short and long chain perfluorocarboxylic acids using boron doped diamond electrodes. Chemosphere, 243 : 125349
CrossRef Pubmed Google scholar
[5]
Barisci S , Suri R . (2021). Electrooxidation of short- and long-chain perfluoroalkyl substances (PFASs) under different process conditions. Journal of Environmental Chemical Engineering, 9( 4): 105323
CrossRef Google scholar
[6]
Bayram E , Ayranci E . (2010). Electrochemically enhanced removal of polycyclic aromatic basic dyes from dilute aqueous solutions by activated carbon cloth electrodes. Environmental Science & Technology, 44( 16): 6331– 6336
CrossRef Pubmed Google scholar
[7]
Bejan D , Guinea E , Bunce N J . (2012). On the nature of the hydroxyl radicals produced at boron-doped diamond and Ebonex (R) anodes. Electrochimica Acta, 69 : 275– 281
CrossRef Google scholar
[8]
Benhadji A, Taleb Ahmed M, Maachi R ( 2011). Electrocoagulation and effect of cathode materials on the removal of pollutants from tannery wastewater of Rouiba. Desalination, 277( 1– 3): 128– 134
CrossRef Google scholar
[9]
Bentel M J , Yu Y , Xu L , Li Z , Wong B M , Men Y , Liu J . (2019). Defluorination of per- and polyfluoroalkyl substances (PFASs) with hydrated electrons: Structural dependence and implications to PFAS remediation and management. Environmental Science & Technology, 53( 7): 3718– 3728
CrossRef Pubmed Google scholar
[10]
Brillas E, Martinez-Huitle C A ( 2015). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 166– 167: 603– 643
CrossRef Google scholar
[11]
Carter K E , Farrell J . (2008). Oxidative destruction of perfluorooctane sulfonate using boron-doped diamond film electrodes. Environmental Science & Technology, 42( 16): 6111– 6115
CrossRef Pubmed Google scholar
[12]
Chaplin B P . (2014). Critical review of electrochemical advanced oxidation processes for water treatment applications. Environmental Science. Processes & Impacts, 16( 6): 1182– 1203
CrossRef Pubmed Google scholar
[13]
Chaplin B P . (2019). The prospect of electrochemical technologies advancing worldwide water treatment. Accounts of Chemical Research, 52( 3): 596– 604
CrossRef Pubmed Google scholar
[14]
Du Z , Deng S , Bei Y , Huang Q , Wang B , Huang J , Yu G . (2014). Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents-a review. Journal of Hazardous Materials, 274 : 443– 454
CrossRef Pubmed Google scholar
[15]
Duan X , Wang W , Wang Q , Sui X , Li N , Chang L . (2020). Electrocatalytic degradation of perfluoroocatane sulfonate (PFOS) on a 3D graphene-lead dioxide (3DG-PbO2) composite anode: electrode characterization, degradation mechanism and toxicity. Chemosphere, 260 : 127587
CrossRef Pubmed Google scholar
[16]
Duinslaeger N , Radjenovic J . (2022). Electrochemical degradation of per- and polyfluoroalkyl substances (PFAS) using low-cost graphene sponge electrodes. Water Research, 213 : 118148
CrossRef Pubmed Google scholar
[17]
Fajardo A S , Rodrigues R F , Martins R C , Castro L M , Quinta-Ferreira R M . (2015). Phenolic wastewaters treatment by electrocoagulation process using Zn anode. Chemical Engineering Journal, 275 : 331– 341
CrossRef Google scholar
[18]
Gao X D , Chorover J . (2012). Adsorption of perfluorooctanoic acid and perfluorooctanesulfonic acid to iron oxide surfaces as studied by flow-through ATR-FTIR spectroscopy. Environmental Chemistry, 9( 2): 148– 157
CrossRef Google scholar
[19]
Geng P , Su J Y , Miles C , Comninellis C , Chen G H . (2015). Highly-ordered magneli Ti4O7 nanotube arrays as effective anodic material for electro-oxidation. Electrochimica Acta, 153 : 316– 324
CrossRef Google scholar
[20]
Giesy J P , Kannan K . (2001). Global distribution of perfluorooctane sulfonate in wildlife. Environmental Science & Technology, 35( 7): 1339– 1342
CrossRef Pubmed Google scholar
[21]
Giesy J P , Kannan K . (2002). Perfluorochemical surfactants in the environment. Environmental Science & Technology, 36( 7): 146A– 152A
CrossRef Pubmed Google scholar
[22]
Golder A K , Samanta A N , Ray S . (2006). Removal of phosphate from aqueous solutions using calcined metal hydroxides sludge waste generated from electrocoagulation. Separation and Purification Technology, 52( 1): 102– 109
CrossRef Google scholar
[23]
Grandjean P . (2018). Delayed discovery, dissemination, and decisions on intervention in environmental health: a case study on immunotoxicity of perfluorinated alkylate substances. Environmental Health, 17( 1): 62
CrossRef Pubmed Google scholar
[24]
Haro M , Rasines G , Macias C , Ania C O . (2011). Stability of a carbon gel electrode when used for the electro-assisted removal of ions from brackish water. Carbon, 49( 12): 3723– 3730
CrossRef Google scholar
[25]
He H , Yu Q J , Lai C C , Zhang C , Liu M H , Huang B , Pu H P , Pan X J . (2021). The treatment of black-odorous water using tower bipolar electro-flocculation including the removal of phosphorus, turbidity, sulfion, and oxygen enrichment. Frontiers of Environmental Science & Engineering, 15( 2): 18
CrossRef Google scholar
[26]
Hogue C . (2019). Governments endorse global PFOA ban, with some exemptions. Chemical and Engineering News, 97( 19): 5– 5
[27]
Houde M , Martin J W , Letcher R J , Solomon K R , Muir D C G . (2006). Biological monitoring of polyfluoroalkyl substances: a review. Environmental Science & Technology, 40( 11): 3463– 3473
CrossRef Pubmed Google scholar
[28]
Huang D , Wang K , Niu J , Chu C , Weon S , Zhu Q , Lu J , Stavitski E , Kim J H . (2020). Amorphous Pd-loaded Ti4O7 electrode for direct anodic destruction of perfluorooctanoic acid. Environmental Science & Technology, 54( 17): 10954– 10963
CrossRef Pubmed Google scholar
[29]
Huang S Y , Fan C S , Hou C H . (2014). Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization. Journal of Hazardous Materials, 278 : 8– 15
CrossRef Pubmed Google scholar
[30]
Hwang J H , Li Sip Y Y , Kim K T , Han G , Rodriguez K L , Fox D W , Afrin S , Burnstine-Townley A , Zhai L , Lee W H . (2022). Nanoparticle-embedded hydrogel synthesized electrodes for electrochemical oxidation of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). Chemosphere, 296 : 134001
CrossRef Pubmed Google scholar
[31]
Kelly B C , Ikonomou M G , Blair J D , Surridge B , Hoover D , Grace R , Gobas F A . (2009). Perfluoroalkyl contaminants in an Arctic marine food web: trophic magnification and wildlife exposure. Environmental Science & Technology, 43( 11): 4037– 4043
CrossRef Pubmed Google scholar
[32]
Key B D , Howell R D , Criddle C S . (1997). Fluorinated organics in the biosphere. Environmental Science & Technology, 31( 9): 2445– 2454
CrossRef Google scholar
[33]
Khalid Y S , Misal S N , Mehraeen S , Chaplin B P . (2022). Reactive-transport modeling of electrochemical oxidation of perfluoroalkyl substances in porous flow-through electrodes. ACS ES&T Engineering, 2( 4): 713– 725
[34]
Khandegar V , Saroha A K . (2013). Electrocoagulation for the treatment of textile industry effluent-a review. Journal of Environmental Management, 128 : 949– 963
CrossRef Pubmed Google scholar
[35]
Kim K , Baldaguez Medina P , Elbert J , Kayiwa E , Cusick R D , Men Y J , Su X . (2020a). Molecular tuning of redox-copolymers for selective electrochemical remediation. Advanced Functional Materials, 30( 52): 2004635
CrossRef Google scholar
[36]
Kim M K , Kim T , Kim T K , Joo S W , Zoh K D . (2020b). Degradation mechanism of perfluorooctanoic acid (PFOA) during electrocoagulation using Fe electrode. Separation and Purification Technology, 247 : 116911
CrossRef Google scholar
[37]
Lacasa E , Canizares P , Saez C , Fernandez F J , Rodrigo M A . (2011). Removal of nitrates from groundwater by electrocoagulation. Chemical Engineering Journal, 171( 3): 1012– 1017
CrossRef Google scholar
[38]
Le T X H , Haflich H , Shah A D , Chaplin B P . (2019). Energy-efficient electrochemical oxidation of perfluoroalkyl substances using a Ti4O7 reactive electrochemical membrane anode. Environmental Science & Technology Letters, 6( 8): 504– 510
CrossRef Google scholar
[39]
Li L , Wang Y Y , Huang Q G . (2021a). First-principles study of the degradation of perfluorooctanesulfonate and perfluorobutanesulfonate on a Magneli phase Ti4O7 anode. ACS ES&T Water, 1( 8): 1737– 1744
CrossRef Google scholar
[40]
Li M , Jin Y T , Yan J F , Liu Z , Feng N X , Han W , Huang L W , Li Q K , Yeung K L , Zhou S Q , Mo C H . (2022a). Exploration of perfluorooctane sulfonate degradation properties and mechanism via electron-transfer dominated radical process. Water Research, 215 : 118259
CrossRef Pubmed Google scholar
[41]
Li M , Mo C H , Luo X , He K Y , Yan J F , Wu Q , Yu P F , Han W , Feng N X , Yeung K L , Zhou S Q . (2021b). Exploring key reaction sites and deep degradation mechanism of perfluorooctane sulfonate via peroxymonosulfate activation under electrocoagulation process. Water Research, 207 : 117849
CrossRef Pubmed Google scholar
[42]
Li X , Chen S , Quan X , Zhang Y . (2011). Enhanced adsorption of PFOA and PFOS on multiwalled carbon nanotubes under electrochemical assistance. Environmental Science & Technology, 45( 19): 8498– 8505
CrossRef Pubmed Google scholar
[43]
Li Y F, Hu C Y, Lee Y C, Lo S L ( 2022b). Effects of zinc salt addition on perfluorooctanoic acid (PFOA) removal by electrocoagulation with aluminum electrodes. Chemosphere, 288( Pt 3): 132665
CrossRef Pubmed Google scholar
[44]
Liang Q J , Gao Y , Li Z G , Cai J Y , Chu N , Hao W , Jiang Y , Zeng R J X . (2022a). Electricity-driven ammonia oxidation and acetate production in microbial electrosynthesis systems. Frontiers of Environmental Science & Engineering, 16( 4): 42
CrossRef Google scholar
[45]
Liang S T , Mora R , Huang Q G , Casson R , Wang Y Y , Woodard S , Anderson H . (2022b). Field demonstration of coupling ion-exchange resin with electrochemical oxidation for enhanced treatment of per- and polyfluoroalkyl substances (PFAS) in groundwater. Chemical Engineering Journal Advances, 9 : 100216
CrossRef Google scholar
[46]
Liang S T , Pierce R Jr , Lin H , Chiang S Y , Huang Q . (2018). Electrochemical oxidation of PFOA and PFOS in concentrated waste streams. Remediation Journal, 28( 2): 127– 134
CrossRef Google scholar
[47]
Lin H , Niu J , Ding S , Zhang L . (2012). Electrochemical degradation of perfluorooctanoic acid (PFOA) by Ti/SnO2-Sb, Ti/SnO2-Sb/PbO2 and Ti/SnO2-Sb/MnO2 anodes. Water Research, 46( 7): 2281– 2289
CrossRef Pubmed Google scholar
[48]
Lin H , Niu J F , Liang S T , Wang C , Wang Y J , Jin F Y , Luo Q , Huang Q G . (2018). Development of macroporous Magneli phase Ti4O7 ceramic materials: As an efficient anode for mineralization of poly- and perfluoroalkyl substances. Chemical Engineering Journal, 354 : 1058– 1067
CrossRef Google scholar
[49]
Lin H , Niu J F , Xu J L , Li Y , Pan Y H . (2013). Electrochemical mineralization of sulfamethoxazole by Ti/SnO2-Sb/Ce-PbO2 anode: Kinetics, reaction pathways, and energy cost evolution. Electrochimica Acta, 97 : 167– 174
CrossRef Google scholar
[50]
Lin H , Wang Y , Niu J , Yue Z , Huang Q . (2015). Efficient sorption and removal of perfluoroalkyl acids (PFAAs) from aqueous solution by metal hydroxides generated in situ by electrocoagulation. Environmental Science & Technology, 49( 17): 10562– 10569
CrossRef Pubmed Google scholar
[51]
Lin H , Xiao R , Xie R , Yang L , Tang C , Wang R , Chen J , Lv S , Huang Q . (2021). Defect engineering on a Ti4O7 electrode by Ce3+ doping for the efficient electrooxidation of perfluorooctanesulfonate. Environmental Science & Technology, 55( 4): 2597– 2607
CrossRef Pubmed Google scholar
[52]
Lin M H , Mehraeen S , Cheng G , Rusinek C , Chaplin B P . (2020). Role of near-electrode solution chemistry on bacteria attachment and poration at low applied potentials. Environmental Science & Technology, 54( 1): 446– 455
CrossRef Pubmed Google scholar
[53]
Lindstrom A B , Strynar M J , Libelo E L . (2011). Polyfluorinated compounds: past, present, and future. Environmental Science & Technology, 45( 19): 7954– 7961
CrossRef Pubmed Google scholar
[54]
Liu G S , Zhou H , Teng J , You S J . (2019a). Electrochemical degradation of perfluorooctanoic acid by macro- porous titanium suboxide anode in the presence of sulfate. Chemical Engineering Journal, 371 : 7– 14
CrossRef Google scholar
[55]
Liu L , Li D , Li C , Ji R , Tian X . (2018a). Metal nanoparticles by doping carbon nanotubes improved the sorption of perfluorooctanoic acid. Journal of Hazardous Materials, 351 : 206– 214
CrossRef Pubmed Google scholar
[56]
Liu L , Liu Y , Che N , Gao B , Li C . (2021a). Electrochemical adsorption of perfluorooctanoic acid on a novel reduced graphene oxide aerogel loaded with Cu nanoparticles and fluorine. Journal of Hazardous Materials, 416 : 125866
CrossRef Pubmed Google scholar
[57]
Liu L Q , Qu Y X , Huang J , Weber R . (2021b). Per- and polyfluoroalkyl substances (PFASs) in Chinese drinking water: Risk assessment and geographical distribution. Environmental Sciences Europe, 33( 1): 6
CrossRef Google scholar
[58]
Liu Y , Chen S , Quan X , Yu H , Zhao H , Zhang Y . (2015). Efficient mineralization of perfluorooctanoate by electro-Fenton with H2O2 electro-generated on hierarchically porous carbon. Environmental Science & Technology, 49( 22): 13528– 13533
CrossRef Pubmed Google scholar
[59]
Liu Y , Fan X , Quan X , Fan Y , Chen S , Zhao X . (2019b). Enhanced perfluorooctanoic acid degradation by electrochemical activation of sulfate solution on B/N codoped diamond. Environmental Science & Technology, 53( 9): 5195– 5201
CrossRef Pubmed Google scholar
[60]
Liu Y , Gao G , Vecitis C D . (2020). Prospects of an electroactive carbon nanotube membrane toward environmental applications. Accounts of Chemical Research, 53( 12): 2892– 2902
CrossRef Pubmed Google scholar
[61]
Liu Y , Hu X M , Zhao Y , Wang J , Lu M X , Peng F H , Bao J . (2018b). Removal of perfluorooctanoic acid in simulated and natural waters with different electrode materials by electrocoagulation. Chemosphere, 201 : 303– 309
CrossRef Pubmed Google scholar
[62]
Lu D , Sha S , Luo J , Huang Z , Zhang Jackie X . (2020). Treatment train approaches for the remediation of per- and polyfluoroalkyl substances (PFAS): a critical review. Journal of Hazardous Materials, 386 : 121963
CrossRef Pubmed Google scholar
[63]
Luo G M , Wang Y Z , Gao L X , Zhang D Q , Lin T . (2018). Graphene bonded carbon nanofiber aerogels with high capacitive deionization capability. Electrochimica Acta, 260 : 656– 663
CrossRef Google scholar
[64]
Ma C Y , Huang S C , Chou P H , Den W , Hou C H . (2016). Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification. Chemosphere, 146 : 113– 120
CrossRef Pubmed Google scholar
[65]
Maldonado V Y , Becker M F , Nickelsen M G , Witt S E . (2021). Laboratory and semi-pilot scale study on the electrochemical treatment of perfluoroalkyl acids from ion exchange still bottoms. Water, 13( 20): 2873
CrossRef Google scholar
[66]
Martínez-Huitle C A , Rodrigo M A , Sirés I , Scialdone O . (2015). Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chemical Reviews, 115( 24): 13362– 13407
CrossRef Pubmed Google scholar
[67]
Baldaguez Medina P , Cotty S , Kim K , Elbert J , Su X . (2021). Emerging investigator series: electrochemically-mediated remediation of GenX using redox-copolymers. Environmental Science: Water Research & Technology, 7( 12): 2231– 2240
CrossRef Google scholar
[68]
Mollah MYA, Morkovsky P, Gomes JAG, Kesmez M, Parga J, Cocke DL ( 2004). Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 114( 1– 3): 199– 210
CrossRef Pubmed Google scholar
[69]
Mu T , Park M , Kim K Y . (2021). Energy-efficient removal of PFOA and PFOS in water using electrocoagulation with an air-cathode. Chemosphere, 281 : 130956
CrossRef Pubmed Google scholar
[70]
Nienhauser A B , Ersan M S , Lin Z H , Perreault F , Westerhoff P , Garcia-Segura S . (2022). Boron-doped diamond electrodes degrade short- and long-chain per- and polyfluorinated alkyl substances in real industrial wastewaters. Journal of Environmental Chemical Engineering, 10( 2): 107192
CrossRef Google scholar
[71]
Niu J , Li Y , Shang E , Xu Z , Liu J . (2016). Electrochemical oxidation of perfluorinated compounds in water. Chemosphere, 146 : 526– 538
CrossRef Pubmed Google scholar
[72]
Niu J , Lin H , Gong C , Sun X . (2013). Theoretical and experimental insights into the electrochemical mineralization mechanism of perfluorooctanoic acid. Environmental Science & Technology, 47( 24): 14341– 14349
CrossRef Pubmed Google scholar
[73]
Niu J , Lin H , Xu J , Wu H , Li Y . (2012). Electrochemical mineralization of perfluorocarboxylic acids (PFCAs) by Ce-doped modified porous nanocrystalline PbO2 film electrode. Environmental Science & Technology, 46( 18): 10191– 10198
CrossRef Pubmed Google scholar
[74]
Niu Z J , Wang Y J , Lin H , Jin F Y , Li Y , Niu J F . (2017). Electrochemically enhanced removal of perfluorinated compounds (PFCs) from aqueous solution by CNTs-graphene composite electrode. Chemical Engineering Journal, 328 : 228– 235
CrossRef Google scholar
[75]
Nunes S P ( 2020). Can fouling in membranes be ever defeated? Current Opinion in Chemical Engineering, 28: 90– 95
CrossRef Google scholar
[76]
Nzeribe N , Crimi M , Mededovic Thagard S , Holsen T M . (2019). Physico-chemical processes for the treatment of per- and polyfluoroalkyl substances (PFAS): a review blossom. Critical Reviews in Environmental Science and Technology, 49( 10): 866– 915
CrossRef Google scholar
[77]
Opoku-Duah S , Johnson D . (2020). Removal of perfluorooctanoic acid and microcystins from drinking water by electrocoagulation. Journal of Chemistry, 2020 : 1836264
CrossRef Google scholar
[78]
Pica N E , Funkhouser J , Yin Y , Zhang Z , Ceres D M , Tong T , Blotevogel J . (2019). Electrochemical oxidation of hexafluoropropylene oxide dimer acid (GenX): mechanistic insights and efficient treatment train with nanofiltration. Environmental Science & Technology, 53( 21): 12602– 12609
CrossRef Pubmed Google scholar
[79]
Pierpaoli M , Szopińska M , Wilk B K , Sobaszek M , Łuczkiewicz A , Bogdanowicz R , Fudala-Książek S . (2021). Electrochemical oxidation of PFOA and PFOS in landfill leachates at low and highly boron-doped diamond electrodes. Journal of Hazardous Materials, 403 : 123606
CrossRef Pubmed Google scholar
[80]
Qi Z L , You S J , Liu R B , Chuah C J . (2020). Performance and mechanistic study on electrocoagulation process for municipal wastewater treatment based on horizontal bipolar electrodes. Frontiers of Environmental Science & Engineering, 14( 3): 40
CrossRef Google scholar
[81]
Quan Q , Wen H , Han S , Wang Z , Shao Z , Chen M . (2020). Fluorous-core nanoparticle-embedded hydrogel synthesized via tandem photo-controlled radical polymerization: facilitating the separation of perfluorinated alkyl substances from water. ACS Applied Materials & Interfaces, 12( 21): 24319– 24327
CrossRef Pubmed Google scholar
[82]
Radjenovic J, Duinslaeger N, Avval S S, Chaplin B P ( 2020). Facing the challenge of poly- and perfluoroalkyl substances in water: Is electrochemical oxidation the answer? Environmental Science & Technology, 54( 23): 14815– 14829
CrossRef Pubmed Google scholar
[83]
Rahman M F , Peldszus S , Anderson W B . (2014). Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: a review. Water Research, 50 : 318– 340
CrossRef Pubmed Google scholar
[84]
Ren Y F , Zheng W T , Duan X G , Goswami N , Liu Y B . (2022). Recent advances in electrochemical removal and recovery of phosphorus from water: a review. Environmental Functional Materials, 1( 1): 10– 20
CrossRef Google scholar
[85]
Saeidi N , Kopinke F D , Georgi A . (2021). Controlling adsorption of perfluoroalkyl acids on activated carbon felt by means of electrical potentials. Chemical Engineering Journal, 416 : 129070
CrossRef Google scholar
[86]
Santos D , Lopes A , Pacheco M J , Gomes A , Ciriaco L . (2014). The oxygen evolution reaction at Sn-Sb oxide anodes: influence of the oxide preparation mode. Journal of the Electrochemical Society, 161( 9): H564– H572
CrossRef Google scholar
[87]
Sharma S , Shetti N P , Basu S , Nadagouda M N , Aminabhavi T M . (2022). Remediation of per- and polyfluoroalkyls (PFAS) via electrochemical methods. Chemical Engineering Journal, 430 : 132895
CrossRef Google scholar
[88]
Shen Z C , Zhan L , Xu Z M . (2022). Thermal defluorination behaviors of PFOS, PFOA and PFBS during regeneration of activated carbon by molten salt. Frontiers of Environmental Science & Engineering, 16( 8): 103
CrossRef Google scholar
[89]
Shi H , Chiang S D , Wang Y , Wang Y , Liang S , Zhou J , Fontanez R , Gao S , Huang Q . (2021). An electrocoagulation and electrooxidation treatment train to remove and degrade per- and polyfluoroalkyl substances in aqueous solution. Science of the Total Environment, 788 : 147723
CrossRef Pubmed Google scholar
[90]
Shi H , Wang Y , Li C , Pierce R , Gao S , Huang Q . (2019). Degradation of perfluorooctanesulfonate by reactive electrochemical membrane composed of Magnéli phase titanium suboxide. Environmental Science & Technology, 53( 24): 14528– 14537
CrossRef Pubmed Google scholar
[91]
Shrestha B , Ezazi M , Ajayan S , Kwon G . (2021). Reversible adsorption and desorption of PFAS on inexpensive graphite adsorbents via alternating electric field. RSC Advances, 11( 55): 34652– 34659
CrossRef Pubmed Google scholar
[92]
Si Y X , Zhang F , Hong C , Li G H , Zhang H C , Liu D . (2021). Effect of current density on groundwater arsenite removal performance using air cathode electrocoagulation. Frontiers of Environmental Science & Engineering, 15( 6): 112
CrossRef Google scholar
[93]
Song S , Fan J Q , He Z Q , Zhan L Y , Liu Z W , Chen J M , Xu X H . (2010). Electrochemical degradation of azo dye CI reactive red 195 by anodic oxidation on Ti/SnO2-Sb/PbO2 electrodes. Electrochimica Acta, 55( 11): 3606– 3613
CrossRef Google scholar
[94]
Soriano Á , Gorri D , Urtiaga A . (2017). Efficient treatment of perfluorohexanoic acid by nanofiltration followed by electrochemical degradation of the NF concentrate. Water Research, 112 : 147– 156
CrossRef Pubmed Google scholar
[95]
Soriano A , Gorri D , Urtiaga A . (2019). Membrane preconcentration as an efficient tool to reduce the energy consumption of perfluorohexanoic acid electrochemical treatment. Separation and Purification Technology, 208 : 160– 168
CrossRef Google scholar
[96]
Soriano A , Schaefer C , Urtiaga A . (2020). Enhanced treatment of perfluoroalkyl acids in groundwater by membrane separation and electrochemical oxidation. Chemical Engineering Journal Advances, 4 : 100042
CrossRef Google scholar
[97]
Steenland K , Fletcher T , Savitz D A . (2010). Epidemiologic evidence on the health effects of perfluorooctanoic acid (PFOA). Environmental Health Perspectives, 118( 8): 1100– 1108
CrossRef Pubmed Google scholar
[98]
Taves D R . (1968). Evidence that there are two forms of fluoride in human serum. Nature, 217( 5133): 1050– 1051
CrossRef Pubmed Google scholar
[99]
Tian Y H , Xing J Y , Huyan C X , Zhu C Z , Du D , Zhu W L , Lin Y H , Chowdhury I . (2021). Electrically controlled anion exchange based on a polypyrrole/carbon cloth composite for the removal of perfluorooctanoic acid. ACS ES&T Water, 1( 12): 2504– 2512
CrossRef Google scholar
[100]
Trautmann A M , Schell H , Schmidt K R , Mangold K M , Tiehm A . (2015). Electrochemical degradation of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in groundwater. Water Science and Technology, 71( 10): 1569– 1575
CrossRef Pubmed Google scholar
[101]
Trojanowicz M , Bojanowska-Czajka A , Bartosiewicz I , Kulisa K . (2018). Advanced oxidation/reduction processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS): a review of recent advances. Chemical Engineering Journal, 336 : 170– 199
CrossRef Google scholar
[102]
Uwayezu J N , Carabante I , Lejon T , van Hees P , Karlsson P , Hollman P , Kumpiene J . (2021). Electrochemical degradation of per- and poly-fluoroalkyl substances using boron-doped diamond electrodes. Journal of Environmental Management, 290 : 112573
CrossRef Pubmed Google scholar
[103]
van Genuchten C M , Addy S E A , Peña J , Gadgil A J . (2012). Removing arsenic from synthetic groundwater with iron electrocoagulation: an Fe and As K-edge EXAFS study. Environmental Science & Technology, 46( 2): 986– 994
CrossRef Pubmed Google scholar
[104]
Veciana M , Bräunig J , Farhat A , Pype M L , Freguia S , Carvalho G , Keller J , Ledezma P . (2022). Electrochemical oxidation processes for PFAS removal from contaminated water and wastewater: fundamentals, gaps and opportunities towards practical implementation. Journal of Hazardous Materials, 434 : 128886
CrossRef Pubmed Google scholar
[105]
Wang P , Zhang M , Li Q , Lu Y . (2021). Atmospheric diffusion of perfluoroalkyl acids emitted from fluorochemical industry and its associated health risks. Environment International, 146 : 106247
CrossRef Pubmed Google scholar
[106]
Wang Q N , Liu M Y , Zhao H Y , Chen Y , Xiao F , Chu W H , Zhao G H . (2019a). Efficiently degradation of perfluorooctanoic acid in synergic electrochemical process combining cathodic electro-Fenton and anodic oxidation. Chemical Engineering Journal, 378 : 122071
CrossRef Google scholar
[107]
Wang S Y , Li X N , Zhang Y B , Quan X , Chen S , Yu H T , Zhao H M . (2014a). Electrochemically enhanced adsorption of PFOA and PFOS on multiwalled carbon nanotubes in continuous flow mode. Chinese Science Bulletin, 59( 23): 2890– 2897
CrossRef Google scholar
[108]
Wang X Y , Xie Y , Yang G Z , Hao J M , Ma J , Ning P . (2020a). Enhancement of the electrocatalytic oxidation of antibiotic wastewater over the conductive black carbon-PbO2 electrode prepared using novel green approach. Frontiers of Environmental Science & Engineering, 14( 2): 22
CrossRef Google scholar
[109]
Wang Y , Lin H , Jin F , Niu J , Zhao J , Bi Y , Li Y . (2016). Electrocoagulation mechanism of perfluorooctanoate (PFOA) on a zinc anode: influence of cathodes and anions. Science of the Total Environment, 557-558 : 542– 550
CrossRef Pubmed Google scholar
[110]
Wang Y Y , Li L , Wang Y F , Shi H H , Wang L , Huang Q G . (2022). Electrooxidation of perfluorooctanesulfonic acid on porous Magnéli phase titanium suboxide anodes: impact of porous structure and composition. Chemical Engineering Journal, 431 : 133929
CrossRef Google scholar
[111]
Wang Y Y , Pierce R , Shi H H , Li C G , Huang Q G . (2020b). Electrochemical degradation of perfluoroalkyl acids by titanium suboxide anodes. Environmental Science: Water Research & Technology, 6( 1): 144– 152
CrossRef Google scholar
[112]
Wang Z , Cousins I T , Scheringer M , Buck R C , Hungerbühler K . (2014b). Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: production and emissions from quantifiable sources. Environment International, 70 : 62– 75
CrossRef Pubmed Google scholar
[113]
Wu M S , Liao T L , Wang Y Y , Wan C C . (2004). Assessment of the wettability of porous electrodes for lithium-ion batteries. Journal of Applied Electrochemistry, 34( 8): 797– 805
CrossRef Google scholar
[114]
Xie J , Zhang C , David Waite T . (2022). Integrated flow anodic oxidation and ultrafiltration system for continuous defluorination of perfluorooctanoic acid (PFOA). Water Research, 216 : 118319
CrossRef Pubmed Google scholar
[115]
Xu L , Qian X B , Wang K X , Fang C , Niu J F . (2020). Electrochemical mineralization mechanisms of perfluorooctanoic acid in water assisted by low frequency ultrasound. Journal of Cleaner Production, 263 : 121546
CrossRef Google scholar
[116]
Xu Z , Yu Y , Liu H , Niu J . (2017). Highly efficient and stable Zr-doped nanocrystalline PbO2 electrode for mineralization of perfluorooctanoic acid in a sequential treatment system. Science of the Total Environment, 579 : 1600– 1607
CrossRef Pubmed Google scholar
[117]
Yang B , Han Y N , Yu G , Zhuo Q F , Deng S B , Wu J H , Zhang P X . (2016). Efficient removal of perfluoroalkyl acids (PFAAs) from aqueous solution by electrocoagulation using iron electrode. Chemical Engineering Journal, 303 : 384– 390
CrossRef Google scholar
[118]
Yang B , Jiang C , Yu G , Zhuo Q , Deng S , Wu J , Zhang H . (2015). Highly efficient electrochemical degradation of perfluorooctanoic acid (PFOA) by F-doped Ti/SnO2 electrode. Journal of Hazardous Materials, 299 : 417– 424
CrossRef Pubmed Google scholar
[119]
Yang L , He L , Xue J , Ma Y , Xie Z , Wu L , Huang M , Zhang Z . (2020). Persulfate-based degradation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in aqueous solution: Review on influences, mechanisms and prospective. Journal of Hazardous Materials, 393 : 122405
CrossRef Pubmed Google scholar
[120]
Yang L H, Yang W J, Lv S H, Zhu T T, Adeel Sharif H M, Yang C, Du J, Lin H ( 2022). Is HFPO-DA (GenX) a suitable substitute for PFOA? A comprehensive degradation comparison of PFOA and GenX via electrooxidation. Environmental Research, 204(Pt A): 111995
CrossRef Pubmed Google scholar
[121]
Yang S S , Fernando S , Holsen T M , Yang Y . (2019). Inhibition of perchlorate formation during the electrochemical oxidation of perfluoroalkyl acid in groundwater. Environmental Science & Technology Letters, 6( 12): 775– 780
CrossRef Pubmed Google scholar
[122]
You S J , Liu B , Gao Y F , Wang Y , Tang C Y Y , Huang Y B , Ren N Q . (2016). Monolithic porous magneli-phase Ti4O7 for electro-oxidation treatment of industrial wastewater. Electrochimica Acta, 214 : 326– 335
CrossRef Google scholar
[123]
Zhao H Y, Gao J X, Zhao G H, Fan J Q, Wang Y B, Wang Y J ( 2013). Fabrication of novel SnO 2 -Sb/carbon aerogel electrode for ultrasonic electrochemical oxidation of perfluorooctanoate with high catalytic efficiency. Applied Catalysis B: Environmental, 136– 137: 278– 286
CrossRef Google scholar
[124]
Zhong C Q , Wei K J , Han W Q , Wang L J , Sun X Y , Li J S . (2013). Electrochemical degradation of tricyclazole in aqueous solution using Ti/SnO2-Sb/PbO2 anode. Journal of Electroanalytical Chemistry, 705 : 68– 74
CrossRef Google scholar
[125]
Zhuo Q , Deng S , Yang B , Huang J , Yu G . (2011). Efficient electrochemical oxidation of perfluorooctanoate using a Ti/SnO2-Sb-Bi anode. Environmental Science & Technology, 45( 7): 2973– 2979
CrossRef Pubmed Google scholar
[126]
Zhuo Q , Li X , Yan F , Yang B , Deng S , Huang J , Yu G . (2014). Electrochemical oxidation of 1H,1H,2H,2H-perfluorooctane sulfonic acid (6:2 FTS) on DSA electrode: operating parameters and mechanism. Journal of Environmental Sciences (China), 26( 8): 1733– 1739
CrossRef Pubmed Google scholar
[127]
Zhuo Q F , Deng S B , Yang B , Huang J , Wang B , Zhang T T , Yu G . (2012). Degradation of perfluorinated compounds on a boron-doped diamond electrode. Electrochimica Acta, 77 : 17– 22
CrossRef Google scholar
[128]
Zhuo Q F , Luo M Q , Guo Q W , Yu G , Deng S B , Xu Z C , Yang B , Liang X L . (2016). Electrochemical oxidation of environmentally persistent perfluorooctane sulfonate by a novel Lead dioxide anode. Electrochimica Acta, 213 : 358– 367
CrossRef Google scholar

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52170068 and U21A20161) and the Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (No. QAK202108).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11783-023-1618-z and is accessible for authorized users.

RIGHTS & PERMISSIONS

2023 Higher Education Press
AI Summary AI Mindmap
PDF(8396 KB)

Accesses

Citations

Detail

Sections
Recommended

/