REVIEW ARTICLE

Phenolic compounds removal by wet air oxidation based processes

  • Linbi Zhou 1,2 ,
  • Hongbin Cao 1,2 ,
  • Claude Descorme 3 ,
  • Yongbing Xie , 2
Expand
  • 1. School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
  • 2. Division of Environmental Engineering and Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • 3. Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex, France

Received date: 20 Jan 2017

Revised date: 13 Mar 2017

Accepted date: 13 Apr 2017

Published date: 15 Feb 2018

Copyright

2017 Higher Education Press and Springer–Verlag Berlin Heidelberg

Highlights

Different reaction parameters are emphasized in the WAO process.

Homogenous catalysts and heterogeneous catalysts are extensively discussed.

Mechanism and kinetic of WAO are elaborated.

Three kinds of the reactors for CWAO are compared.

Integration of CWAO with biological degradation is discussed.

Abstract

Wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) are efficient processes to degrade organic pollutants in water. In this paper, we especially reviewed the WAO and CWAO processes for phenolic compounds degradation. It provides a comprehensive introduction to the CWAO processes that could be beneficial to the scientists entering this field of research. The influence of different reaction parameters, such as temperature, oxygen pressure, pH, stirring speed are analyzed in detail; Homogenous catalysts and heterogeneous catalysts including carbon materials, transitional metal oxides and noble metals are extensively discussed, among which Cu based catalysts and Ru catalysts were shown to be the most active. Three different kinds of the reactor implemented for the CWAO (autoclave, packed bed and membrane reactors) are illustrated and compared. To enhance the degradation efficiency and reduce the cost of the CWAO process, biological degradation can be combined to develop an integrated technology.

Cite this article

Linbi Zhou , Hongbin Cao , Claude Descorme , Yongbing Xie . Phenolic compounds removal by wet air oxidation based processes[J]. Frontiers of Environmental Science & Engineering, 2018 , 12(1) : 1 . DOI: 10.1007/s11783-017-0970-2

Acknowledgements

This work was financially supported by the National Science Fund for Distinguished Young Scholars (No. 51425405), Beijing Natural Science Foundation (No. 8172043) and Chinese Academy of Sciences (ZDRW-ZS-2016-5-3).
1
Autenrieth R L, Bonner J S, Akgerman A, Okaygun M, McCreary E M. Biodegradation of phenolic watstes. Journal of Hazardous Materials, 1991, 28(1–2): 29–53

DOI

2
Stich H F. The beneficial and hazardous effects of simple phenolic-compounds. Mutation Research, 1991, 259(3–4): 307–324

DOI

3
Mohammadi S, Kargari A, Sanaeepur H, Abbassian K, Najafi A, Mofarrah E. Phenol removal from industrial wastewaters: a short review. Desalination and Water Treatment, 2014, 53(8): 2215–2234

DOI

4
Rappoport Z. The Chemistry of Phenols. New York: John Wiley & Sons, 2004

5
Veeresh G S, Kumar P, Mehrotra I. Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: a review. Water Research, 2005, 39(1): 154–170

DOI

6
Ribeiro A R, Nunes O C, Pereira M F, Silva A M. An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched directive 2013/39/EU. Environment International, 2015, 75: 33–51

DOI

7
Andreozzi R, Caprio V, Insola A, Marotta R. Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 1999, 53(1): 51–59

DOI

8
Debellefontaine H, Chakchouk M, Foussard J N, Tissot D, Striolo P. Treatment of organic aqueous wastes: wet air oxidation and wet peroxide oxidation(R). Environmental Pollution, 1996, 92(2): 155–164

DOI

9
Dietrich M J, Rall T L, Canney P J. Wet air oxidation of hazardous organics in wastewater. Environment and Progress, 1985, 4(3): 171–177

DOI

10
Freeman H. Standard Handbook of Hazardous Waste Treatment and Disposal. New York: McGraw-Hill Book Co., 1989

11
Kim K H, Ihm S K. Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: a review. Journal of Hazardous Materials, 2011, 186(1): 16–34

DOI

12
Kolaczkowski S T, Plucinski P, Beltran F J, Rivas F J, McLurgh D B. Wet air oxidation: a review of process technologies and aspects in reactor design. Chemical Engineering Journal, 1999, 73(2): 143–160

DOI

13
Levec J, Pintar A. Catalytic wet-air oxidation processes: a review. Catalysis Today, 2007, 124(3–4): 172–184

DOI

14
Guo J, Al-Dahhan M. Catalytic wet air oxidation of phenol in concurrent downflow and upflow packed-bed reactors over pillared clay catalyst. Chemical Engineering Science, 2005, 60(3): 735–746

DOI

15
Imamura S. Catalytic and noncatalytic wet oxidation. Industrial & Engineering Chemistry Research, 1999, 38(5): 1743–1753

DOI

16
Bhargava S K, Tardio J, Prasad J, Foger K, Akolekar D B, Grocott S C. Wet oxidation and catalytic wet oxidation. Industrial & Engineering Chemistry Research, 2006, 45(4): 1221–1258

DOI

17
Devlin H R, Harris I J. Mechanism of the oxidation of aqueous phenol of aqueous phenol with dissolved oxygen. Industrial & Engineering Chemistry Fundamentals, 1984, 23(4): 387–392

DOI

18
Kolaczkowski S T, Beltran F J, McLurgh D B, Rivas F J. Wet air oxidation of phenol: factors that may influence global kinetics. Process Safety and Environmental Protection, 1997, 75(4 B4): 257–265

DOI

19
Pintar A, Levec J. Catalytic-oxidation of aqueous p-chlorophenol and p-nitrophenol solutions. Chemical Engineering Science, 1994, 49(24): 4391–4407

DOI

20
Joglekar H S, Samant S D, Joshi J B. Kinetics of wet air oxidation of phenol and substitued phenols. Water Research, 1991, 25(2): 135–145

DOI

21
Rivas F J, Kolaczkowski S T, Beltran F J, McLurgh D B. Development of a model for the wet air oxidation of phenol based on a free radical mechanism. Chemical Engineering Science, 1998, 53(14): 2575–2586

DOI

22
Lin S H, Chuang T S. Combined treatment of phenol of phenolic wastewater by wet air oxidation and activated sludge. Toxicological and Environmental Chemistry, 1994, 44(3–4): 243–258

DOI

23
Shibaeva L V. Oxidation of phenol with molecular oxygen in aqueous solutions I. The kinetics of the oxidation of phenol with oxygen. Kinetics and Catalysis, 1969, 10: 832–836

24
Willms R S, Balinsky A M, Reible D D, Wetzel D M, Harrison D P. Aqueous phase oxidation: the intrinsic kinetics of single organic compounds. Industrial & Engineering Chemistry Research, 1987, 26(1): 148–154

DOI

25
Vicente J, Rosal R, Diaz M. Noncatalytic oxidation of phenol in aqueous solutions. Industrial & Engineering Chemistry Research, 2002, 41(1): 46–51

DOI

26
Pruden B, Le H. Wet air oxidation of soluble components in waste water. Canadian Journal of Chemical Engineering, 1976, 54(4): 319–325

DOI

27
Jaulin L, Chornet E. High shear jet-mixers as two-phase reactors: an application to the oxidation of phenol in aqueous media. Canadian Journal of Chemical Engineering, 1987, 65(1): 64–70

DOI

28
Mundale V D, Joglekar H S, Kalam A, Joshi J B. Regeneration of spent acitivated carbon by wet air oxidation. Canadian Journal of Chemical Engineering, 1991, 69(5): 1149–1159

DOI

29
Vaidya P D, Mahajani V V. Insight into subcritical wet oxidation of phenol. Advances in Environmental Research, 2002, 6(4): 429–439

DOI

30
Arena F, Italiano C, Raneri A, Saja C. Mechanistic and kinetic insights into the wet air oxidation of phenol with oxygen (CWAO) by homogeneous and heterogeneous transition-metal catalysts. Applied Catalysis B: Environmental, 2010, 99(1–2): 321–328

DOI

31
Tufano V. A multi-step kinetic model for phenol oxidation in high-pressure water. Chemical Engineering & Technology, 1993, 16(3): 186–190

DOI

32
Gopalan S, Savage P E. A reaction network model for phenol oxidation in supercritical water. AIChE Journal, 1995, 41(8): 1864–1873

DOI

33
Gopalan S, Savage P E. Reaction mechanism for phenol oxidation in supercritical water. Journal of Physical Chemistry, 1994, 98(48): 12646–12652

DOI

34
Suárez-Ojeda M E, Carrera J, Metcalfe I S, Font J. Wet air oxidation (WAO) as a precursor to biological treatment of substituted phenols: refractory nature of the WAO intermediates. Chemical Engineering Journal, 2008, 144(2): 205–212

DOI

35
Arena F, Di Chio R, Gumina B, Spadaro L, Trunfio G. Recent advances on wet air oxidation catalysts for treatment of industrial wastewaters. Inorganica Chimica Acta, 2015, 431: 101–109

DOI

36
Fu D M, Zhang F F, Wang L Z, Yang F, Liang X M. Simultaneous removal of nitrobenzene and phenol by homogenous catalytic wet air oxidation. Chinese Journal of Catalysis, 2015, 36(7): 952–956

DOI

37
Priyanka S V, Srivastava V C, Mall I D. Catalytic oxidation of nitrobenzene by copper loaded activated carbon. Separation and Purification Technology, 2014, 125: 284–290

DOI

38
Messele S A, Soares O S G P, Órfão J J M, Stüber F, Bengoa C, Fortuny A, Fabregat A, Font J. Zero-valent iron supported on nitrogen-containing activated carbon for catalytic wet peroxide oxidation of phenol. Applied Catalysis B: Environmental, 2014, 154–155: 329–338

DOI

39
Ayusheev A B, Taran O P, Seryak I A, Podyacheva O Y, Descorme C, Besson M, Kibis L S, Boronin A I, Romanenko A I, Ismagilov Z R, Parmon V. Ruthenium nanoparticles supported on nitrogen-doped carbon nanofibers for the catalytic wet air oxidation of phenol. Applied Catalysis B: Environmental, 2014, 146: 177–185

DOI

40
Podyacheva O Y, Ismagilov Z R, Boronin A I, Kibis L S, Slavinskaya E M, Noskov A S, Shikina N V, Ushakov V A, Ischenko A V. Platinum nanoparticles supported on nitrogen-containing carbon nanofibers. Catalysis Today, 2012, 186(1): 42–47

DOI

41
Barroso-Bogeat A, Alexandre-Franco M, Fernández-González C, Gómez-Serrano V. Preparation of activated carbon-metal oxide hybrid catalysts: textural characterization. Fuel Processing Technology, 2014, 126: 95–103

DOI

42
Akyurtlu J F, Akyurtlu A, Kovenklioglu S. Catalytic oxidation of phenol in aqueous solutions. Catalysis Today, 1998, 40(4): 343–352

DOI

43
Fortuny A, Bengoa C, Font J, Fabregat A. Bimetallic catalysts for continuous catalytic wet air oxidation of phenol. Journal of Hazardous Materials, 1999, 64(2): 181–193

DOI

44
Yang S, Zhu W, Wang J, Chen Z. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor. Journal of Hazardous Materials, 2008, 153(3): 1248–1253

DOI

45
Espinosa de los Monteros A, Lafaye G, Cervantes A, Del Angel G, Barbier J, Torres G. Catalytic wet air oxidation of phenol over metal catalyst (Ru, Pt) supported on TiO2-CeO2 oxides. Catalysis Today, 2015, 258: 564–569

DOI

46
Messele S A. Homogenous and heterogenous aqueous phase oxidation of phenol with fenton like process. Doctoral Thesis universitat Rovira I Virgili 2014

47
Shalagina A E, Ismagilov Z R, Podyacheva O Y, Kvon R I, Ushakov V A. Synthesis of nitrogen-containing carbon nanofibers by catalytic decomposition of ethylene/ammonia mixture. Carbon, 2007, 45(9): 1808–1820

DOI

48
Ribeiro R S, Silva A M T, Figueiredo J L, Faria J L, Gomes H T. Catalytic wet peroxide oxidation: a route towards the application of hybrid magnetic carbon nanocomposites for the degradation of organic pollutants: a review. Applied Catalysis B: Environmental, 2016, 187: 428–460

DOI

49
Baricot M, Dastgheib S A, Fortuny A, Stüber F, Bengoa Ch, Fabregat A. Catalytic wet air oxidation of phenol by surface modified activated carbons. Canadian Journal of Chemical Engineering, 2004, 69(1): 1–6

50
Janecki D, Szczotka A, Burghardt A, Bartelmus G. Modelling wet-air oxidation of phenol in a trickle-bed reactor using active carbon as a catalyst. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2016, 91(3): 596–607

DOI

51
Fortuny A, Font J, Fabregat A. Wet air oxidation of phenol using active carbon as catalyst. Applied Catalysis B: Environmental, 1998, 19(3–4): 165–173

DOI

52
Soares O S G P, Rocha R P, Gonçalves A G, Figueiredo J L, Órfão J J M, Pereira M F R. Highly active N-doped carbon nanotubes prepared by an easy ball milling method for advanced oxidation processes. Applied Catalysis B: Environmental, 2016, 192: 296–303

DOI

53
Yang S, Li X, Zhu W, Wang J, Descorme C. Catalytic activity, stability and structure of multi-walled carbon nanotubes in the wet air oxidation of phenol. Carbon, 2008, 46(3): 445–452

DOI

54
Rocha R P, Sousa J P S, Silva A M T, Pereira M F R, Figueiredo J L. Catalytic activity and stability of multiwalled carbon nanotubes in catalytic wet air oxidation of oxalic acid: The role of the basic nature induced by the surface chemistry. Applied Catalysis B: Environmental, 2011, 104(3–4): 330–336

DOI

55
Yang S X, Sun Y, Yang H W, Wan J F. Catalytic wet air oxidation of phenol, nitrobenzene and aniline over the multi-walled carbon nanotubes (MWCNTs) as catalysts. Frontiers of Environmental Science & Engineering, 2014, 9(3): 436–443

DOI

56
Wang J, Fu W, He X, Yang S, Zhu W. Catalytic wet air oxidation of phenol with functionalized carbon materials as catalysts: reaction mechanism and pathway. Joural of Enviromental Sciences, 2014, 26(8): 1741–1749

57
Quintanilla A, Menéndez N, Tornero J, Casas J A, Rodríguez J J. Surface modification of carbon-supported iron catalyst during the wet air oxidation of phenol: Influence on activity, selectivity and stability. Applied Catalysis B: Environmental, 2008, 81(1–2): 105–114

DOI

58
Oliviero L, Barbier-Jr J, Duprez D, Guerrero-Ruiz A, Bachiller-Baeza B, Rodriguez-Ramos I. Catalytic wet air oxidation of phenol and acrylic acid over Ru/C and Ru-CeO2/C catalysts. Applied Catalysis B: Environmental, 2000, 25(4): 267–275

DOI

59
Stuber F, Polaert I, Delmas H, Font J, Fortuny A, Fabregat A. Catalytic wet air oxidation of phenol using active carbon: performance of discontinuous and continuous reactors. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2001, 76(7): 743–751

DOI

60
Carriazo J, Guelou E, Barrault J, Tatibouet J M, Molina R, Moreno S. Synthesis of pillared clays containing Al, Al-Fe or Al-Ce-Fe from a bentonite: characterization and catalytic activity. Catalysis Today, 2005, 107–08: 126–132

DOI

61
Pires C A, dos Santos A C C, Jordao E. Oxidation of phenol in aqueous solution with copper oxide catalysts supported on g-Al2O3, pillared clay and TiO2: comparsion of the performance and costs associated with each catalyst. Brazilian Journal of Chemical Engineering, 2015, 32(4): 837–848

DOI

62
Ksontini N, Najjar W, Ghorbel A. Al-Fe pillared clays: synthesis, characterization and catalytic wet air oxidation activity. Journal of Physics and Chemistry of Solids, 2008, 69(5–6): 1112–1115

DOI

63
Kloprogge J T. Synthesis of smectites and porous pillared clay catalysts: a review. Journal of Porous Materials, 1998, 5(1): 5–41

DOI

64
Guo J, Al-Dahhan M. Activity and stability of iron-containing pillared clay catalysts for wet air oxidation of phenol. Applied Catalysis A: General, 2006, 299: 175–184

DOI

65
Wu Q, Hu X, Yue P L, Zhao X S, Lu G Q. Copper/MCM-41 as catalyst for the wet oxidation of phenol. Applied Catalysis B: Environmental, 2001, 32(3): 151–156

DOI

66
Lin S S Y, Chang D J, Wang C H, Chen C C. Catalytic wet air oxidation of phenol by CeO2 catalyst—effect of reaction conditions. Water Research, 2003, 37(4): 793–800

DOI

67
Chen I P, Lin S S, Wang C H, Chang S H. CWAO of phenol using CeO2/g-Al2O3 with promoter effectiveness of promoter addition and catalyst regeneration. Chemosphere, 2007, 66(1): 172–178

DOI

68
Chang L Z, Chen I P, Lin S S. An assessment of the suitable operating conditions for the CeO2/g-Al2O3 catalyzed wet air oxidation of phenol. Chemosphere, 2005, 58(4): 485–492

DOI

69
Hocevar S, Krasovec U O, Orel B, Arico A S, Kim H. CWO of phenol on two differently prepared CuO-CeO2 catalysts. Applied Catalysis B: Environmental, 2000, 28(2): 113–125

DOI

70
Delgado J J, Chen X, Pérez-Omil J A, Rodríguez-Izquierdo J M, Cauqui M A. The effect of reaction conditions on the apparent deactivation of Ce-Zr mixed oxides for the catalytic wet oxidation of phenol. Catalysis Today, 2012, 180(1): 25–33

DOI

71
Parvas M, Haghighi M, Allahyari S. Degradation of phenol via wet air oxidation over CuO/CeO2-ZrO2 nanocatalyst synthesized employing ultrasound energy: physicochemical characterization and catalytic performance. Environmental Technology, 2014, 35(9–12): 1140–1149

DOI

72
Parvas M, Haghighi M, Allahyari S. Catalytic wet air oxidation of phenol over ultrasound-assisted synthesized Ni/CeO2-ZrO2 nanocatalyst used in wastewater treatment. Arabian Journal of Chemistry, 2014

DOI

73
Arena F, Italiano C, Drago Ferrante G, Trunfio G, Spadaro L. A mechanistic assessment of the wet air oxidation activity of MnCeOx catalyst toward toxic and refractory organic pollutants. Applied Catalysis B: Environmental, 2014, 144: 292–299

DOI

74
Chen H, Sayari A, Adnot A, Larachi F. Composition-activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation. Applied Catalysis B: Environmental, 2001, 32(3): 195–204

DOI

75
Gutiérrez M, Pina P, Torres M, Cauqui M A, Herguido J. Catalytic wet oxidation of phenol using membrane reactors: a comparative study with slurry-type reactors. Catalysis Today, 2010, 149(3–4): 326–333

DOI

76
Aihua X, Chenglin S. Catalytic behaviour and copper leaching of Cu0.10Zn0.90Al1.90Fe0.10O4 spinel for catalytic wet air oxidation of phenol. Environmental Technology, 2012, 33(10–12): 1339–1344

77
Toledo J A, Valenzuela M A, Bosch P, Armendariz H, Montoya A, Nava N, Vazquez A. Effect of Al3+ introduction into hydrothermally prepared ZnFe2O4. Applied Catalysis A: General, 2000, 198(1–2): 235–245

DOI

78
Xu A, Yang M, Qiao R, Du H, Sun C. Activity and leaching features of zinc-aluminum ferrites in catalytic wet oxidation of phenol. Journal of Hazardous Materials, 2007, 147(1–2): 449–456

DOI

79
Alejandre A, Medina F, Rodriguez X, Salagre P, Cesteros Y, Sueiras J E. Cu/Ni/Al layered double hydroxides as precursors of catalysts for the wet air oxidation of phenol aqueous solutions. Applied Catalysis B: Environmental, 2001, 30(1–2): 195–207

DOI

80
Li N, Descorme C, Besson M. Application of Ce0.33Zr0.63Pr0.04O2-supported noble metal catalysts in the catalytic wet air oxidation of 2-chlorophenol: influence of the reaction conditions. Applied Catalysis B: Environmental, 2008, 80(3–4): 237–247

DOI

81
Lafaye G, Barbier J Jr, Duprez D. Impact of cerium-based support oxides in catalytic wet air oxidation: conflicting role of redox and acid-base properties. Catalysis Today, 2015, 253: 89–98

DOI

82
Chen I P, Lin S S, Wang C H, Chang L, Chang J S. Preparing and characterizing an optimal supported ceria catalyst for the catalytic wet air oxidation of phenol. Applied Catalysis B: Environmental, 2004, 50(1): 49–58

DOI

83
Yamaguchi T, Ikeda N, Hattori H, Tanabe K. Surface and catalytic propeties of cerium oxide. Journal of Catalysis, 1981, 67(2): 324–330

DOI

84
Jampaiah D, Venkataswamy P, Tur K M, Ippolito S J, Bhargava S K, Reddy B M. Effect of MnOx loading on structural, surface, and catalytic properties of CeO2-MnOx mixed oxides prepared by Sol-Gel method. Zeitschrift fur Anorganische und Allgemeine Chemie, 2015, 641(6): 1141–1149

DOI

85
Wu X D, Liang Q, Weng D, Fan J, Ran R. Synthesis of CeO2-MnOx mixed oxides and catalytic performance under oxygen-rich condition. Catalysis Today, 2007, 126(3–4): 430–435

DOI

86
Khachatryan L, Lomnicki S, Dellinger B. An expanded reaction kinetic model of the CuO surface-mediated formation of PCDD/F from pyrolysis of 2-chlorophenol. Chemosphere, 2007, 68(9): 1741–1750

DOI

87
Rocha M A L, Del Ángel G, Torres-Torres G, Cervantes A, Vázquez A, Arrieta A, Beltramini J N. Effect of the Pt oxidation state and Ce3+/Ce4+ ratio on the Pt/TiO2-CeO2 catalysts in the phenol degradation by catalytic wet air oxidation (CWAO). Catalysis Today, 2015, 250: 145–154

DOI

88
Imamura S, Fukuda I, Ishida S. Wet oxidatrion catalyzed by ruthenium supported on cerium(IV) oxides. Industrial & Engineering Chemistry Research, 1988, 27(4): 718–721

DOI

89
Keav S, Espinosa de los Monteros A, Barbier J, Duprez D. Wet air oxidation of phenol over Pt and Ru catalysts supported on cerium-based oxides: resistance to fouling and kinetic modelling. Applied Catalysis B: Environmental, 2014, 150–151: 402–410

DOI

90
Wei H, Yan X, He S, Sun C. Catalytic wet air oxidation of pentachlorophenol over Ru/ZrO2 and Ru/ZrSiO2 catalysts. Catalysis Today, 2013, 201: 49–56

DOI

91
Wang J, Zhu W, Yang S, Wang W, Zhou Y. Catalytic wet air oxidation of phenol with pelletized ruthenium catalysts. Applied Catalysis B: Environmental, 2008, 78(1–2): 30–37

DOI

92
Martín-Hernández M, Carrera J, Suárez-Ojeda M E, Besson M, Descorme C. Catalytic wet air oxidation of a high strength p-nitrophenol wastewater over Ru and Pt catalysts: influence of the reaction conditions on biodegradability enhancement. Applied Catalysis B: Environmental, 2012, 123–124: 141–150

DOI

93
Hamoudi S, Sayari A, Belkacemi K, Bonneviot L, Larachi F. Catalytic wet oxidation of phenol over PtxAg1-xMnO2/CeO2 catalysts. Catalysis Today, 2000, 62(4): 379–388

DOI

94
Massa P, Ivorra F, Haure P, Cabello F M, Fenoglio R. Catalytic wet air oxidation of phenol aqueous solutions by 1% Ru/CeO2-Al2O3 catalysts prepared by different methods. Catalysis Communications, 2007, 8(3): 424–428

DOI

95
Yu C, Meng X, Chen G, Zhao P. Catalytic wet air oxidation of high-concentration organic pollutants by upflow packed-bed reactor using a Ru-Ce catalyst derived from a Ru3(CO)12 precursor. RSC Advances, 2016, 6(27): 22633–22638

DOI

96
Sang-Kyung K, Son-Ki I.Effects of Ce addition and Pt precursor on the activity of Pt/Al2O3 catalysts for wet oxidation of phenol, 2002: 1967–1972

97
Li N, Descorme C, Besson M. Catalytic wet air oxidation of 2-chlorophenol over Ru loaded CexZr1-xO2 solid solutions. Applied Catalysis B: Environmental, 2007, 76(1–2): 92–100

DOI

98
Manole C C, Julcour-Lebigue C, Wilhelm A M, Delmas H. Catalytic oxidation of 4-hydroxybenzoic acid on activated carbon in batch autoclave and fixed-bed reactors. Industrial & Engineering Chemistry Research, 2007, 46(25): 8388–8396

DOI

99
Iojoiu E E, Walmsley J C, Raeder H, Miachon S, Dalmon J A. Catalytic membrane structure influence on the pressure effects in an interfacial contactor catalytic membrane reactor applied to wet air oxidation. Catalysis Today, 2005, 104(2–4): 329–335

DOI

100
Mantzavinos D, Psillakis E. Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2004, 79(5): 431–454

DOI

101
Guisasola A, Baeza J A, Carrera J, Casas C, Lafuente J. An off-line respirometric procedure to determine inhibition and toxicity of biodegradable compounds in biomass from an industrial WWTP. Water Science and Technology, 2003, 48(11–12): 267–275

102
Mantzavinos D, Sahibzada M, Livingston A G, Metcalfe I S, Hellgardt K. Wastewater treatment: wet air oxidation as a precursor to biological treatment. Catalysis Today, 1999, 53(1): 93–106

DOI

103
Mantzavinos D, Hellenbrand R, Livingston A G, Metcalfe I S. Beneficial combination of wet oxidation, membrane separation and biodegradation processes for treatment of polymer processing wastewaters. Canadian Journal of Chemical Engineering, 2000, 78(2): 418–422

DOI

104
Hellenbrand R, Mantzavinos D, Metcalfe I S, Livingston A G. Integration of wet oxidation and nanofiltration for treatment of recalcitrant organics in wastewater. Industrial & Engineering Chemistry Research, 1997, 36(12): 5054–5062

DOI

Outlines

/