Monitoring fossil fuel CO2 emissions from co-emitted NO2 observed from space: progress, challenges, and future perspectives

Hui Li, Jiaxin Qiu, Kexin Zhang, Bo Zheng

PDF(5056 KB)
PDF(5056 KB)
Front. Environ. Sci. Eng. ›› 2025, Vol. 19 ›› Issue (1) : 2. DOI: 10.1007/s11783-025-1922-x
REVIEW ARTICLE

Monitoring fossil fuel CO2 emissions from co-emitted NO2 observed from space: progress, challenges, and future perspectives

Author information +
History +

Highlights

● CO2 emission monitoring supports achieving Nationally Determined Contributions.

● Co-emitted NO x and CO2 in fuel combustion enable NO2-based CO2 emission inversion.

● Structural and data uncertainties challenge researchers but guide future pathway.

● Interdisciplinary collaboration is crucial for advancing CO2 emission inversion.

Abstract

Developing an anthropogenic carbon dioxides (CO2) emissions monitoring and verification support (MVS) capacity is essential to support the Global Stocktake (GST) and ratchet up Nationally Determined Contributions (NDCs). The 2019 IPCC refinement proposes top-down inversed CO2 emissions, primarily from fossil fuel (FFCO2), as a viable emission dataset. Despite substantial progress in directly inferring FFCO2 emissions from CO2 observations, substantial challenges remain, particularly in distinguishing local CO2 enhancements from the high background due to the long atmospheric lifetime. Alternatively, using short-lived and co-emitted nitrogen dioxide (NO2) as a proxy in FFCO2 emission inversion has gained prominence. This methodology is broadly categorized into plume-based and emission ratios (ERs)-based inversion methods. In the plume-based methods, NO2 observations act as locators, constraints, and validators for deciphering CO2 plumes downwind of sources, typically at point source and city scales. The ERs-based inversion approach typically consists of two steps: inferring NO2-based nitrogen oxides (NOx) emissions and converting NOx to CO2 emissions using CO2-to-NOx ERs. While integrating NO2 observations into FFCO2 emission inversion offers advantages over the direct CO2-based methods, uncertainties persist, including both structural and data-related uncertainties. Addressing these uncertainties is a primary focus for future research, which includes deploying next-generation satellites and developing advanced inversion systems. Besides, data caveats are necessary when releasing data to users to prevent potential misuse. Advancing NO2-based CO2 emission inversion requires interdisciplinary collaboration across multiple communities of remote sensing, emission inventory, transport model improvement, and atmospheric inversion algorithm development.

Graphical abstract

Keywords

Fossil fuel CO2 emissions / CO2 satellites / NO2 satellites / Emission inversion methods / Uncertainty management / Future perspectives

Cite this article

Download citation ▾
Hui Li, Jiaxin Qiu, Kexin Zhang, Bo Zheng. Monitoring fossil fuel CO2 emissions from co-emitted NO2 observed from space: progress, challenges, and future perspectives. Front. Environ. Sci. Eng., 2025, 19(1): 2 https://doi.org/10.1007/s11783-025-1922-x

Bo Zheng is an associate professor at Tsinghua Shenzhen International Graduate School. He received B.S. and Ph.D. degrees from Tsinghua University in Environmental Engineering. Then he completed a four-year postdoctoral training at the Laboratory for Sciences of Climate and Environment in France before joining Tsinghua Shenzhen International Graduate School as an Assistant Professor in 2021. He focuses on the atmospheric carbon cycle and has developed a variety of techniques to analyze the sources and sinks of atmospheric constituents (e.g., greenhouse gases and air pollutants) based on satellite remote sensing. He has published over 150 peer-reviewed articles, which have received over 27000 times citations with an H-index of 66 (Google scholar)

References

[1]
Abel D, Holloway T, Kladar R M, Meier P, Ahl D, Harkey M, Patz J. (2017). Response of power plant emissions to ambient temperature in the Eastern United States. Environmental Science & Technology, 51(10): 5838–5846
CrossRef Google scholar
[2]
Ammoura L, Xueref-Remy I, Gros V, Baudic A, Bonsang B, Petit J E, Perrussel O, Bonnaire N, Sciare J, Chevallier F. (2014). Atmospheric measurements of ratios between CO2 and co-emitted species from traffic: a tunnel study in the Paris megacity. Atmospheric Chemistry and Physics, 14(23): 12871–12882
CrossRef Google scholar
[3]
Attermeyer K, Casas-Ruiz J P, Fuss T, Pastor A, Cauvy-Fraunié S, Sheath D, Nydahl A C, Doretto A, Portela A P, Doyle B C. . (2021). Carbon dioxide fluxes increase from day to night across European streams. Communications Earth & Environment, 2(1): 118
CrossRef Google scholar
[4]
Bares R, Lin J C, Hoch S W, Baasandorj M, Mendoza D L, Fasoli B, Mitchell L, Catharine D, Stephens B B. (2018). The wintertime covariation of CO2 and criteria pollutants in an urban valley of the Western United States. Journal of Geophysical Research. Atmospheres, 123(5): 2684–2703
CrossRef Google scholar
[5]
Beirle S, Boersma K F, Platt U, Lawrence M G, Wagner T. (2011). Megacity emissions and lifetimes of nitrogen oxides probed from space. Science, 333(6050): 1737–1739
CrossRef Google scholar
[6]
Beirle S, Borger C, Dörner S, Li A, Hu Z, Liu F, Wang Y, Wagner T. (2019). Pinpointing nitrogen oxide emissions from space. Science Advances, 5(11): eaax9800
CrossRef Google scholar
[7]
Beirle S, Borger C, Jost A, Wagner T. (2023). Improved catalog of NOx point source emissions (version 2). Earth System Science Data, 15(7): 3051–3073
CrossRef Google scholar
[8]
Berezin E V, Konovalov I B, Ciais P, Richter A, Tao S, Janssens-Maenhout G, Beekmann M, Schulze E D. (2013). Multiannual changes of CO2 emissions in China: indirect estimates derived from satellite measurements of tropospheric NO2 columns. Atmospheric Chemistry and Physics, 13(18): 9415–9438
CrossRef Google scholar
[9]
BerndS, Jean-Loup B Z, ArminL S, YasjkaM (2019). The European CO2 monitoring mission: observing anthropogenic greenhouse gas emissions from space. Proc. SPIE 11180, International Conference on Space Optics—ICSO 2018, 111800M (12 July 2019, Chania, Greece)
[10]
BerndS, Valerie F, BézyJ L, MeijerY, DurandY, Courrèges-LacosteG B, PachotC, Löscher A, NettH, MinoglouK, et al. (2021). The Copernicus CO2M mission for monitoring anthropogenic carbon dioxide emissions from space. Proc. SPIE 11852, International Conference on Space Optics — ICSO 2020, 118523M (11 June 2021, Online Only)
[11]
Boersma K F, Jacob D J, Trainic M, Rudich Y, Desmedt I, Dirksen R, Eskes H J. (2009). Validation of urban NO2 concentrations and their diurnal and seasonal variations observed from the SCIAMACHY and OMI sensors using in situ surface measurements in Israeli cities. Atmospheric Chemistry and Physics, 9(12): 3867–3879
CrossRef Google scholar
[12]
Bovensmann H, Buchwitz M, Burrows J P, Reuter M, Krings T, Gerilowski K, Schneising O, Heymann J, Tretner A, Erzinger J. (2010). A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications. Atmospheric Measurement Techniques, 3(4): 781–811
CrossRef Google scholar
[13]
Bovensmann H, Burrows J P, Buchwitz M, Frerick J, Noël S, Rozanov V V, Chance K V, Goede A P H. (1999). SCIAMACHY: mission objectives and measurement modes. Journal of the Atmospheric Sciences, 56(2): 127–150
CrossRef Google scholar
[14]
Broquet G, Bréon F M, Renault E, Buchwitz M, Reuter M, Bovensmann H, Chevallier F, Wu L, Ciais P. (2018). The potential of satellite spectro-imagery for monitoring CO2 emissions from large cities. Atmospheric Measurement Techniques, 11(2): 681–708
CrossRef Google scholar
[15]
Buchwitz M, Reuter M, Noël S, Bramstedt K, Schneising O, Hilker M, Fuentes Andrade B, Bovensmann H, Burrows J P, Di Noia A. . (2021). Can a regional-scale reduction of atmospheric CO2 during the COVID-19 pandemic be detected from space? A case study for East China using satellite XCO2 retrievals. Atmospheric Measurement Techniques, 14(3): 2141–2166
CrossRef Google scholar
[16]
Burrows J P, Hölzle E, Goede A P H, Visser H, Fricke W. (1995). SCIAMACHY: scanning imaging absorption spectrometer for atmospheric chartography. Acta Astronautica, 35(7): 445–451
CrossRef Google scholar
[17]
Burrows J P, Weber M, Buchwitz M, Rozanov V, Ladstätter-Weißenmayer A, Richter A, Debeek R, Hoogen R, Bramstedt K, Eichmann K U. . (1999). The global ozone monitoring experiment (GOME): mission concept and first scientific results. Journal of the Atmospheric Sciences, 56(2): 151–175
CrossRef Google scholar
[18]
Byrne B, Baker D F, Basu S, Bertolacci M, Bowman K W, Carroll D, Chatterjee A, Chevallier F, Ciais P, Cressie N. . (2023). National CO2 budgets (2015–2020) inferred from atmospheric CO2 observations in support of the global stocktake. Earth System Science Data, 15(2): 963–1004
CrossRef Google scholar
[19]
Chatterjee A, Gierach M M, Sutton A J, Feely R A, Crisp D, Eldering A, Gunson M R, O’Dell C W, Stephens B B, Schimel D S. (2017). Influence of El Niño on atmospheric CO2 over the tropical Pacific Ocean: findings from NASA’s OCO-2 mission. Science, 358(6360): eaam5776
CrossRef Google scholar
[20]
Chevallier F, Broquet G, Zheng B, Ciais P, Eldering A. (2022). Large CO2 emitters as seen from satellite: comparison to a gridded global emission inventory. Geophysical Research Letters, 49(5): e2021GL097540
CrossRef Google scholar
[21]
Chevallier F, Zheng B, Broquet G, Ciais P, Liu Z, Davis S J, Deng Z, Wang Y, Bréon F-M, O’Dell C W. (2020). Local anomalies in the column-averaged dry air mole fractions of carbon dioxide across the globe during the first months of the coronavirus recession. Geophysical Research Letters, 47(22): e2020GL090244
CrossRef Google scholar
[22]
Choulga M, Janssens-Maenhout G, Super I, Solazzo E, Agusti-Panareda A, Balsamo G, Bousserez N, Crippa M, Denier Van Der Gon H, Engelen R. . (2021). Global anthropogenic CO2 emissions and uncertainties as a prior for Earth system modelling and data assimilation. Earth System Science Data, 13(11): 5311–5335
CrossRef Google scholar
[23]
Ciais P, Dolman A J, Bombelli A, Duren R, Peregon A, Rayner P J, Miller C, Gobron N, Kinderman G, Marland G. . (2014). Current systematic carbon-cycle observations and the need for implementing a policy-relevant carbon observing system. Biogeosciences, 11(13): 3547–3602
CrossRef Google scholar
[24]
Cooper M, Martin R V, Padmanabhan A, Henze D K. (2017). Comparing mass balance and adjoint methods for inverse modeling of nitrogen dioxide columns for global nitrogen oxide emissions. Journal of Geophysical Research. Atmospheres, 122(8): 4718–4734
CrossRef Google scholar
[25]
Cooper M J, Martin R V, Hammer M S, Levelt P F, Veefkind P, Lamsal L N, Krotkov N A, Brook J R, Mclinden C A. (2022). Global fine-scale changes in ambient NO2 during COVID-19 lockdowns. Nature, 601(7893): 380–387
CrossRef Google scholar
[26]
Correa S M. (1993). A Review of NOx Formation Under Gas-Turbine Combustion Conditions. Combustion Science and Technology, 87(1−6): 329–362
CrossRef Google scholar
[27]
Crisp D, Pollock H R, Rosenberg R, Chapsky L, Lee R A M, Oyafuso F A, Frankenberg C, O’Dell C W, Bruegge C J, Doran G B. . (2017). The on-orbit performance of the Orbiting Carbon Observatory-2 (OCO-2) instrument and its radiometrically calibrated products. Atmospheric Measurement Techniques, 10(1): 59–81
CrossRef Google scholar
[28]
Cusworth D H, Thorpe A K, Miller C E, Ayasse A K, Jiorle R, Duren R M, Nassar R, Mastrogiacomo J P, Nelson R R. (2023). Two years of satellite-based carbon dioxide emission quantification at the world’s largest coal-fired power plants. Atmospheric Chemistry and Physics, 23(22): 14577–14591
CrossRef Google scholar
[29]
de Foy B, Schauer J J. (2022). An improved understanding of NOx emissions in South Asian megacities using TROPOMI NO2 retrievals. Environmental Research Letters, 17(2): 024006
CrossRef Google scholar
[30]
del Portillo I, Cameron B G, Crawley E F. (2019). A technical comparison of three low earth orbit satellite constellation systems to provide global broadband. Acta Astronautica, 159: 123–135
CrossRef Google scholar
[31]
Dumont Le Brazidec J, Vanderbecken P, Farchi A, Bocquet M, Lian J, Broquet G, Kuhlmann G, Danjou A, Lauvaux T. (2023). Segmentation of XCO2 images with deep learning: application to synthetic plumes from cities and power plants. Geoscientific Model Development, 16(13): 3997–4016
CrossRef Google scholar
[32]
Dumont Le Brazidec J, Vanderbecken P, Farchi A, Broquet G, Kuhlmann G, Bocquet M. (2024). Deep learning applied to CO2 power plant emissions quantification using simulated satellite images. Geoscientific Model Development, 17(5): 1995–2014
CrossRef Google scholar
[33]
Eby M, Zickfeld K, Montenegro A, Archer D, Meissner K J, Weaver A J. (2009). Lifetime of anthropogenic climate change: millennial time scales of potential CO2 and surface temperature perturbations. Journal of Climate, 22(10): 2501–2511
CrossRef Google scholar
[34]
Editorial . (2023). Global stocktake and beyond. Nature Climate Change, 13(10): 999
CrossRef Google scholar
[35]
Eduardo Calvo BuendiaS G, Limmeechokchai B, Pipatti R, Rojas Y, Sturgiss R, Tanabe K, Wirth T, Romano D J W, Garg A, Weitz M M, et al. (2019). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories_Overview. Genève: The Intergovernmental Panel on Climate Change
[36]
Eldering A, Taylor T E, O’Dell C W, Pavlick R. (2019). The OCO-3 mission: measurement objectives and expected performance based on 1 year of simulated data. Atmospheric Measurement Techniques, 12(4): 2341–2370
CrossRef Google scholar
[37]
Eldering A, Wennberg P O, Crisp D, Schimel D S, Gunson M R, Chatterjee A, Liu J, Schwandner F M, Sun Y, O’Dell C W. . (2017). The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes. Science, 358(6360): eaam5745
CrossRef Google scholar
[38]
EuropeanC, Ciais P, Palmer P, Scholze M, Kentarchos A, Brunhes T, Dolman H, Husband R, Holmlund K, Engelen R, et al. (2017). An Operational Anthropogenic CO2 Emissions Monitoring & Verification System: Baseline Requirements, Model Components and Functional Architecture. Brussels: Publications Office of the European Union
[39]
Feng S, Jiang F, Wang H, Liu Y, He W, Wang H, Shen Y, Zhang L, Jia M, Ju W, Chen J M. (2024). China’s fossil fuel CO2 emissions estimated using surface observations of coemitted NO2. Environmental Science & Technology, 58(19): 8299–8312
CrossRef Google scholar
[40]
Finch D P, Palmer P I, Zhang T. (2022). Automated detection of atmospheric NO2 plumes from satellite data: a tool to help infer anthropogenic combustion emissions. Atmospheric Measurement Techniques, 15(3): 721–733
CrossRef Google scholar
[41]
Friedlingstein P, O’sullivan M, Jones M W, Andrew R M, Bakker D C E, Hauck J, Landschützer P, Le Quéré C, Luijkx I T, Peters G P. . (2023). Global Carbon Budget 2023. Earth System Science Data, 15(12): 5301–5369
CrossRef Google scholar
[42]
Fu Y, Sun W, Fan D, Zhang Z, Hao Y. (2022). An assessment of China’s industrial emission characteristics using satellite observations of XCO2, SO2, and NO2. Atmospheric Pollution Research, 13(8): 101486
CrossRef Google scholar
[43]
Fuentes Andrade B, Buchwitz M, Reuter M, Bovensmann H, Richter A, Boesch H, Burrows J P. (2024). A method for estimating localized CO2 emissions from co-located satellite XCO2 and NO2 images. Atmospheric Measurement Techniques, 17(3): 1145–1173
CrossRef Google scholar
[44]
Fujinawa T, Kuze A, Suto H, Shiomi K, Kanaya Y, Kawashima T, Kataoka F, Mori S, Eskes H, Tanimoto H. (2021). First concurrent observations of NO2 and CO2 from power plant plumes by airborne remote sensing. Geophysical Research Letters, 48(14): e2021GL092685
CrossRef Google scholar
[45]
Goldberg D L, Harkey M, de Foy B, Judd L, Johnson J, Yarwood G, Holloway T. (2022). Evaluating NOx emissions and their effect on O3 production in Texas using TROPOMI NO2 and HCHO. Atmospheric Chemistry and Physics, 22(16): 10875–10900
CrossRef Google scholar
[46]
Goldberg D L, Lu Z, Oda T, Lamsal L N, Liu F, Griffin D, Mclinden C A, Krotkov N A, Duncan B N, Streets D G. (2019a). Exploiting OMI NO2 satellite observations to infer fossil-fuel CO2 emissions from U.S. megacities. Science of the Total Environment, 695: 133805
CrossRef Google scholar
[47]
Goldberg D L, Lu Z, Streets D G, de Foy B, Griffin D, Mclinden C A, Lamsal L N, Krotkov N A, Eskes H. (2019b). Enhanced capabilities of TROPOMI NO2: estimating NOx from North American cities and power plants. Environmental Science & Technology, 53(21): 12594–12601
CrossRef Google scholar
[48]
Grange S K, Farren N J, Vaughan A R, Rose R A, Carslaw D C. (2019). Strong temperature dependence for light-duty diesel vehicle NOx emissions. Environmental Science & Technology, 53(11): 6587–6596
CrossRef Google scholar
[49]
Graven H D, Stephens B B, Guilderson T P, Campos T L, Schimel D S, Campbell J E, Keeling R F. (2009). Vertical profiles of biospheric and fossil fuel-derived CO2 and fossil fuel CO2: CO ratios from airborne measurements of Δ14C, CO2 and CO above Colorado, USA. Tellus B: Chemical and Physical Meteorology, 61: 536–546
CrossRef Google scholar
[50]
Gu D, Wang Y, Smeltzer C, Boersma K F. (2014). Anthropogenic emissions of NOx over China: reconciling the difference of inverse modeling results using GOME-2 and OMI measurements. Journal of Geophysical Research, D, Atmospheres, 119(12): 7732–7740
CrossRef Google scholar
[51]
HakkarainenJ, IalongoI, KoeneE, SzelągM E, TamminenJ, Kuhlmann G, BrunnerD (2022). Analyzing local carbon dioxide and nitrogen oxide emissions from space using the divergence method: an application to the synthetic SMARTCARB dataset. Frontiers in Remote Sensing, 3
[52]
Hakkarainen J, Ialongo I, Oda T, Szeląg M E, O’Dell C W, Eldering A, Crisp D. (2023). Building a bridge: characterizing major anthropogenic point sources in the South African Highveld region using OCO-3 carbon dioxide snapshot area maps and Sentinel-5P/TROPOMI nitrogen dioxide columns. Environmental Research Letters, 18(3): 035003
CrossRef Google scholar
[53]
Hakkarainen J, Ialongo I, Tamminen J. (2016). Direct space-based observations of anthropogenic CO2 emission areas from OCO-2. Geophysical Research Letters, 43(21): 11400–11406
[54]
Hao M, Zhang J, Niu R, Deng C, Liang H. (2018). Application of BeiDou navigation satellite system in emergency rescue of natural hazards: a case study for field geological survey of Qinghai−Tibet plateau. Geo-Spatial Information Science, 21(4): 294–301
CrossRef Google scholar
[55]
Hassinen S, Balis D, Bauer H, Begoin M, Delcloo A, Eleftheratos K, Gimeno Garcia S, Granville J, Grossi M, Hao N. . (2016). Overview of the O3M SAF GOME-2 operational atmospheric composition and UV radiation data products and data availability. Atmospheric Measurement Techniques, 9(2): 383–407
CrossRef Google scholar
[56]
He C, Lu X, Zhang Y, Liu Z, Jiang F, Sun Y, Gao M, Liu Y, Lin H, Yang J, Lin X, Wang Y, Hu C, Fan S. (2024a). Revisiting the quantification of power plant CO2 emissions in the United States and China from satellite: a comparative study using three top-down approaches. Remote Sensing of Environment, 308: 114192
CrossRef Google scholar
[57]
He Z, Gao L, Liang M, Zeng Z C. (2024b). A survey of methane point source emissions from coal mines in Shanxi province of China using AHSI on board Gaofen-5B. Atmospheric Measurement Techniques, 17(9): 2937–2956
CrossRef Google scholar
[58]
Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D. . (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730): 1999–2049
CrossRef Google scholar
[59]
Heymann J, Reuter M, Buchwitz M, Schneising O, Bovensmann H, Burrows J P, Massart S, Kaiser J W, Crisp D. (2017). CO2 emission of Indonesian fires in 2015 estimated from satellite-derived atmospheric CO2 concentrations. Geophysical Research Letters, 44(3): 1537–1544
CrossRef Google scholar
[60]
Hong X, Zhang C, Tian Y, Zhu Y, Hao Y, Liu C. (2024). First TanSat CO2 retrieval over land and ocean using both nadir and glint spectroscopy. Remote Sensing of Environment, 304: 114053
CrossRef Google scholar
[61]
Hong X, Zhang P, Bi Y, Liu C, Sun Y, Wang W, Chen Z, Yin H, Zhang C, Tian Y, Liu J. (2022). Retrieval of Global carbon dioxide from tansat satellite and comprehensive validation with TCCON measurements and satellite observations. IEEE Transactions on Geoscience and Remote Sensing, 60: 1–16
CrossRef Google scholar
[62]
Ingmann P, Veihelmann B, Langen J, Lamarre D, Stark H, Courrèges-Lacoste G B. (2012). Requirements for the GMES Atmosphere Service and ESA’s implementation concept: sentinels-4/-5 and −5p. Remote Sensing of Environment, 120: 58–69
CrossRef Google scholar
[63]
IPCC(2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Volume 1 General Guidance and Reporting. Genève: The Intergovernmental Panel on Climate Change
[64]
Jervis D, Mckeever J, Durak B O A, Sloan J J, Gains D, Varon D J, Ramier A, Strupler M, Tarrant E. (2021). The GHGSat-D imaging spectrometer. Atmospheric Measurement Techniques, 14(3): 2127–2140
CrossRef Google scholar
[65]
Jones M W, Peters G P, Gasser T, Andrew R M, Schwingshackl C, Gütschow J, Houghton R A, Friedlingstein P, Pongratz J, Le Quéré C. (2023). National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Scientific Data, 10(1): 155
CrossRef Google scholar
[66]
Joyce P, Ruiz Villena C, Huang Y, Webb A, Gloor M, Wagner F H, Chipperfield M P, Barrio Guilló R, Wilson C, Boesch H. (2023). Using a deep neural network to detect methane point sources and quantify emissions from PRISMA hyperspectral satellite images. Atmospheric Measurement Techniques, 16(10): 2627–2640
CrossRef Google scholar
[67]
Kiel M, Eldering A, Roten D D, Lin J C, Feng S, Lei R, Lauvaux T, Oda T, Roehl C M, Blavier J F. . (2021). Urban-focused satellite CO2 observations from the Orbiting Carbon Observatory-3: a first look at the Los Angeles megacity. Remote Sensing of Environment, 258: 112314
CrossRef Google scholar
[68]
Kim H C, Chai T, Stein A, Kondragunta S. (2020a). Inverse modeling of fire emissions constrained by smoke plume transport using HYSPLIT dispersion model and geostationary satellite observations. Atmospheric Chemistry and Physics, 20(17): 10259–10277
CrossRef Google scholar
[69]
Kim J, Jeong U, Ahn M H, Kim J H, Park R J, Lee H, Song C H, Choi Y S, Lee K H, Yoo J M. . (2020b). New era of air quality monitoring from space: geostationary environment monitoring spectrometer (GEMS). Bulletin of the American Meteorological Society, 101(1): E1–E22
CrossRef Google scholar
[70]
Kong H, Lin J, Zhang R, Liu M, Weng H, Ni R, Chen L, Wang J, Yan Y, Zhang Q. (2019). High-resolution (0.05° × 0.05°) NOx emissions in the Yangtze River Delta inferred from OMI. Atmospheric Chemistry and Physics, 19(20): 12835–12856
CrossRef Google scholar
[71]
Konovalov I B, Berezin E V, Ciais P, Broquet G, Zhuravlev R V, Janssens-Maenhout G. (2016). Estimation of fossil-fuel CO2 emissions using satellite measurements of “proxy” species. Atmospheric Chemistry and Physics, 16(21): 13509–13540
CrossRef Google scholar
[72]
Kort E A, Frankenberg C, Miller C E, Oda T. (2012). Space-based observations of megacity carbon dioxide. Geophysical Research Letters, 39(17): 2012GL052738
CrossRef Google scholar
[73]
KuhlmannG, Henne S, MeijerY, BrunnerD (2021). Quantifying CO2 emissions of power plants with CO2 and NO2 imaging satellites. Frontiers in Remote Sensing, 2
[74]
Kurchaba S, Sokolovsky A, Van Vliet J, Verbeek F J, Veenman C J. (2024). Sensitivity analysis for the detection of NO2 plumes from seagoing ships using TROPOMI data. Remote Sensing of Environment, 304: 304
CrossRef Google scholar
[75]
Kuze A, Suto H, Nakajima M, Hamazaki T. (2009). Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Applied Optics, 48(35): 6716–6733
CrossRef Google scholar
[76]
Lamsal L N, Krotkov N A, Vasilkov A, Marchenko S, Qin W, Yang E S, Fasnacht Z, Joiner J, Choi S, Haffner D. . (2021). Ozone Monitoring Instrument (OMI) Aura nitrogen dioxide standard product version 4.0 with improved surface and cloud treatments. Atmospheric Measurement Techniques, 14(1): 455–479
CrossRef Google scholar
[77]
Lange K, Richter A, Burrows J P. (2022). Variability of nitrogen oxide emission fluxes and lifetimes estimated from Sentinel-5P TROPOMI observations. Atmospheric Chemistry and Physics, 22(4): 2745–2767
CrossRef Google scholar
[78]
Lei R, Feng S, Danjou A, Broquet G, Wu D, Lin J C, O’Dell C W, Lauvaux T. (2021). Fossil fuel CO2 emissions over metropolitan areas from space: a multi-model analysis of OCO-2 data over Lahore, Pakistan. Remote Sensing of Environment, 264: 112625
CrossRef Google scholar
[79]
Lei R, Feng S, Xu Y, Tran S, Ramonet M, Grutter M, Garcia A, Campos-Pineda M, Lauvaux T. (2022). Reconciliation of asynchronous satellite-based NO2 and XCO2 enhancements with mesoscale modeling over two urban landscapes. Remote Sensing of Environment, 281: 113241
CrossRef Google scholar
[80]
LeiT, WangD, YuX, MaS, ZhaoW, Cui C, MengJ, TaoS, GuanD (2023). Global iron and steel plant CO2 emissions and carbon-neutrality pathways. Nature, 622, 514–520
[81]
Lespinas F, Wang Y, Broquet G, Bréon F-M, Buchwitz M, Reuter M, Meijer Y, Loescher A, Janssens-Maenhout G, Zheng B. . (2020). The potential of a constellation of low earth orbit satellite imagers to monitor worldwide fossil fuel CO2 emissions from large cities and point sources. Carbon Balance and Management, 15(1): 18
CrossRef Google scholar
[82]
Levelt P F, van den Oord G H J, Dobber M R, Mälkki A, Visser H, de Vries J, Stammes P, Lundell J, Saari H.. (2006). The ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, 44(5): 1093–1101
CrossRef Google scholar
[83]
Li C, Martin R V, Shephard M W, Cady-Pereira K, Cooper M J, Kaiser J, Lee C J, Zhang L, Henze D K. (2019). Assessing the iterative finite difference mass balance and 4D-var methods to derive ammonia emissions over North America using synthetic observations. Journal of Geophysical Research. Atmospheres, 124(7): 4222–4236
CrossRef Google scholar
[84]
Li H, Zheng B. (2023a). TROPOMI NO2 shows a fast recovery of China’s economy in the first quarter of 2023. Environmental Science & Technology Letters, 10(8): 635–641
[85]
Li H, Zheng B, Ciais P, Boersma K F, Riess T C V W, Martin R V, Broquet G, Van Der A R, Li H, Hong C. . (2023b). Satellite reveals a steep decline in China’s CO2 emissions in early 2022. Science Advances, 9(29): eadg7429
CrossRef Google scholar
[86]
Li J, Wang Y, Zhang R, Smeltzer C, Weinheimer A, Herman J, Boersma K F, Celarier E A, Long R W, Szykman J J. . (2021). Comprehensive evaluations of diurnal NO2 measurements during DISCOVER-AQ 2011: effects of resolution-dependent representation of NOx emissions. Atmospheric Chemistry and Physics, 21(14): 11133–11160
CrossRef Google scholar
[87]
Li S, Wang S, Wu Q, Zhang Y, Ouyang D, Zheng H, Han L, Qiu X, Wen Y, Liu M. . (2023c). Emission trends of air pollutants and CO2 in China from 2005 to 2021. Earth System Science Data, 15(6): 2279–2294
CrossRef Google scholar
[88]
Lin J T, Martin R V, Boersma K F, Sneep M, Stammes P, Spurr R, Wang P, Van Roozendael M, Clémer K, Irie H. (2014). Retrieving tropospheric nitrogen dioxide from the Ozone Monitoring Instrument: effects of aerosols, surface reflectance anisotropy, and vertical profile of nitrogen dioxide. Atmospheric Chemistry and Physics, 14(3): 1441–1461
CrossRef Google scholar
[89]
Lin X, van der A R, de Laat J, Eskes H, Chevallier F, Ciais P, Deng Z, Geng Y, Song X, Ni X. . (2023). Monitoring and quantifying CO2 emissions of isolated power plants from space. Atmospheric Chemistry and Physics, 23(11): 6599–6611
CrossRef Google scholar
[90]
Lindenmaier R, Dubey M K, Henderson B G, Butterfield Z T, Herman J R, Rahn T, Lee S H. (2014). Multiscale observations of CO2, 13CO2, and pollutants at four corners for emission verification and attribution. Proceedings of the National Academy of Sciences of the United States of America, 111(23): 8386–8391
CrossRef Google scholar
[91]
Liu F, Beirle S, Zhang Q, Dörner S, He K, Wagner T. (2016). NOx lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations. Atmospheric Chemistry and Physics, 16(8): 5283–5298
CrossRef Google scholar
[92]
Liu F, Duncan B N, Krotkov N A, Lamsal L N, Beirle S, Griffin D, Mclinden C A, Goldberg D L, Lu Z. (2020). A methodology to constrain carbon dioxide emissions from coal-fired power plants using satellite observations of co-emitted nitrogen dioxide. Atmospheric Chemistry and Physics, 20(1): 99–116
CrossRef Google scholar
[93]
Liu J, Bowman K W, Schimel D S, Parazoo N C, Jiang Z, Lee M, Bloom A A, Wunch D, Frankenberg C, Sun Y. . (2017). Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science, 358(6360): eaam5690
CrossRef Google scholar
[94]
Liu S, Valks P, Curci G, Chen Y, Shu L, Jin J, Sun S, Pu D, Li X, Li J. . (2024). Satellite NO2 retrieval complicated by aerosol composition over global urban agglomerations: seasonal variations and long-term trends (2001–2018). Environmental Science & Technology, 58(18): 7891–7903
[95]
Liu Y, Wang J, Yao L, Chen X, Cai Z, Yang D, Yin Z, Gu S, Tian L, Lu N. . (2018). The TanSat mission: preliminary global observations. Science Bulletin, 63(18): 1200–1207
CrossRef Google scholar
[96]
Liu Z, Deng Z, Davis S, Ciais P. (2023). Monitoring global carbon emissions in 2022. Nature Reviews. Earth & Environment, 4(4): 205–206
CrossRef Google scholar
[97]
Liu Z, Deng Z, Zhu B, Ciais P, Davis S J, Tan J, Andrew R M, Boucher O, Arous S B, Canadell J G. . (2022). Global patterns of daily CO2 emissions reductions in the first year of COVID-19. Nature Geoscience, 15(8): 615–620
CrossRef Google scholar
[98]
Lu X, Ye X, Zhou M, Zhao Y, Weng H, Kong H, Li K, Gao M, Zheng B, Lin J. . (2021). The underappreciated role of agricultural soil nitrogen oxide emissions in ozone pollution regulation in North China. Nature Communications, 12(1): 5021
CrossRef Google scholar
[99]
Luderer G, Madeddu S, Merfort L, Ueckerdt F, Pehl M, Pietzcker R, Rottoli M, Schreyer F, Bauer N, Baumstark L. . (2022). Impact of declining renewable energy costs on electrification in low-emission scenarios. Nature Energy, 7(1): 32–42
CrossRef Google scholar
[100]
MacDonald C G, Mastrogiacomo J P, Laughner J L, Hedelius J K, Nassar R, Wunch D. (2023). Estimating enhancement ratios of nitrogen dioxide, carbon monoxide and carbon dioxide using satellite observations. Atmospheric Chemistry and Physics, 23(6): 3493–3516
CrossRef Google scholar
[101]
Maral G, De Ridder J J, Evans B G, Richharia M. (1991). Low earth orbit satellite systems for communications. International Journal of Satellite Communications, 9(4): 209–225
CrossRef Google scholar
[102]
Martin R V, Jacob D J, Chance K, Kurosu T P, Palmer P I, Evans M J. (2003). Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns. Journal of Geophysical Research, 108(D17): 2003JD003453
CrossRef Google scholar
[103]
Massman W J. (1998). A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in air, O2 and N2 near STP. Atmospheric Environment, 32(6): 1111–1127
CrossRef Google scholar
[104]
Meinshausen M, Lewis J, Mcglade C, Gutschow J, Nicholls Z, Burdon R, Cozzi L, Hackmann B. (2022). Realization of Paris Agreement pledges may limit warming just below 2 °C. Nature, 604(7905): 304–309
CrossRef Google scholar
[105]
Miyazaki K, Bowman K. (2023). Predictability of fossil fuel CO2 from air quality emissions. Nature Communications, 14(1): 1604
CrossRef Google scholar
[106]
Miyazaki K, Eskes H, Sudo K, Boersma K F, Bowman K, Kanaya Y. (2017). Decadal changes in global surface NOx emissions from multi-constituent satellite data assimilation. Atmospheric Chemistry and Physics, 17(2): 807–837
CrossRef Google scholar
[107]
Moon J, Choi Y, Jeon W, Kim H C, Pouyaei A, Jung J, Pan S, Kim S, Kim C H, Bak J. . (2024). Hybrid IFDMB/4D-Var inverse modeling to constrain the spatiotemporal distribution of CO and NO2 emissions using the CMAQ adjoint model. Atmospheric Environment, 327: 120490
CrossRef Google scholar
[108]
Nassar R, Hill T G, Mclinden C A, Wunch D, Jones D B A, Crisp D. (2017). Quantifying CO2 Emissions from Individual Power Plants From Space. Geophysical Research Letters, 44(19): 10045–10053
[109]
Nassar R, Mastrogiacomo J P, Bateman-Hemphill W, Mccracken C, Macdonald C G, Hill T, O’Dell C W, Kiel M, Crisp D. (2021). Advances in quantifying power plant CO2 emissions with OCO-2. Remote Sensing of Environment, 264: 112579
CrossRef Google scholar
[110]
NassarR, Moeini O, MastrogiacomoJP, O’DellC W, NelsonR R, KielM, Chatterjee A, ElderingA, CrispD (2022). Tracking CO2 emission reductions from space: a case study at Europe’s largest fossil fuel power plant. Frontiers in Remote Sensing, 3
[111]
Nassar R, Napier-Linton L, Gurney K R, Andres R J, Oda T, Vogel F R, Deng F. (2013). Improving the temporal and spatial distribution of CO2 emissions from global fossil fuel emission data sets. Journal of Geophysical Research. Atmospheres, 118(2): 917–933
CrossRef Google scholar
[112]
Nehrkorn T, Eluszkiewicz J, Wofsy S C, Lin J C, Gerbig C, Longo M, Freitas S. (2010). Coupled weather research and forecasting-stochastic time-inverted lagrangian transport (WRF–STILT) model. Meteorology and Atmospheric Physics, 107(1): 51–64
CrossRef Google scholar
[113]
Newman R, Noy I. (2023). The global costs of extreme weather that are attributable to climate change. Nature Communications, 14(1): 6103
CrossRef Google scholar
[114]
Olsen S C, Randerson J T. (2004). Differences between surface and column atmospheric CO2 and implications for carbon cycle research. Journal of Geophysical Research, 109(D2): 2003JD003968
CrossRef Google scholar
[115]
Ombadi M, Risser M D, Rhoades A M, Varadharajan C. (2023). A warming-induced reduction in snow fraction amplifies rainfall extremes. Nature, 619(7969): 305–310
CrossRef Google scholar
[116]
Palmer P I, Jacob D J, Fiore A M, Martin R V, Chance K, Kurosu T P. (2003). Mapping isoprene emissions over North America using formaldehyde column observations from space. Journal of Geophysical Research, 108(D6): 2002JD002153
CrossRef Google scholar
[117]
Park H, Jeong S, Park H, Labzovskii L D, Bowman K W. (2021). An assessment of emission characteristics of Northern Hemisphere cities using spaceborne observations of CO2, CO, and NO2. Remote Sensing of Environment, 254: 112246
CrossRef Google scholar
[118]
Park S S, Kozawa K, Fruin S, Mara S, Hsu Y K, Jakober C, Winer A, Herner J. (2011). Emission Factors for high-emitting vehicles based on on-road measurements of individual vehicle exhaust with a mobile measurement platform. Journal of the Air & Waste Management Association, 61(10): 1046–1056
CrossRef Google scholar
[119]
Penn E, Holloway T. (2020). Evaluating current satellite capability to observe diurnal change in nitrogen oxides in preparation for geostationary satellite missions. Environmental Research Letters, 15(3): 034038
CrossRef Google scholar
[120]
Pillai D, Buchwitz M, Gerbig C, Koch T, Reuter M, Bovensmann H, Marshall J, Burrows J P. (2016). Tracking city CO2 emissions from space using a high-resolution inverse modelling approach: a case study for Berlin, Germany. Atmospheric Chemistry and Physics, 16(15): 9591–9610
CrossRef Google scholar
[121]
Qu Z, Henze D K, Worden H M, Jiang Z, Gaubert B, Theys N, Wang W. (2022). Sector-based top-down estimates of NOx, SO2, and CO emissions in East Asia. Geophysical Research Letters, 49(2): e2021GL096009
CrossRef Google scholar
[122]
Reuter M, Buchwitz M, Hilboll A, Richter A, Schneising O, Hilker M, Heymann J, Bovensmann H, Burrows J P. (2014). Decreasing emissions of NOx relative to CO2 in East Asia inferred from satellite observations. Nature Geoscience, 7(11): 792–795
CrossRef Google scholar
[123]
Reuter M, Buchwitz M, Schneising O, Krautwurst S, O’Dell C W, Richter A, Bovensmann H, Burrows J P. (2019). Towards monitoring localized CO2 emissions from space: co-located regional CO2 and NO2 enhancements observed by the OCO-2 and S5P satellites. Atmospheric Chemistry and Physics, 19(14): 9371–9383
CrossRef Google scholar
[124]
Röser F, Widerberg O, Höhne N, Day T. (2020). Ambition in the making: analysing the preparation and implementation process of the Nationally Determined Contributions under the Paris Agreement. Climate Policy, 20(4): 415–429
CrossRef Google scholar
[125]
Santaren D, Broquet G, Bréon F M, Chevallier F, Siméoni D, Zheng B, Ciais P. (2021). A local- to national-scale inverse modeling system to assess the potential of spaceborne CO2 measurements for the monitoring of anthropogenic emissions. Atmospheric Measurement Techniques, 14(1): 403–433
CrossRef Google scholar
[126]
Schneising O, Buchwitz M, Reuter M, Heymann J, Bovensmann H, Burrows J P. (2011). Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY. Atmospheric Chemistry and Physics, 11(6): 2863–2880
CrossRef Google scholar
[127]
Schuit B J, Maasakkers J D, Bijl P, Mahapatra G, Van Den Berg A W, Pandey S, Lorente A, Borsdorff T, Houweling S, Varon D J. . (2023). Automated detection and monitoring of methane super-emitters using satellite data. Atmospheric Chemistry and Physics, 23(16): 9071–9098
CrossRef Google scholar
[128]
Schwandner F M, Gunson M R, Miller C E, Carn S A, Eldering A, Krings T, Verhulst K R, Schimel D S, Nguyen H M, Crisp D. . (2017). Spaceborne detection of localized carbon dioxide sources. Science, 358(6360): eaam5782
CrossRef Google scholar
[129]
Shah V, Jacob D J, Dang R, Lamsal L N, Strode S A, Steenrod S D, Boersma K F, Eastham S D, Fritz T M, Thompson C. . (2023). Nitrogen oxides in the free troposphere: implications for tropospheric oxidants and the interpretation of satellite NO2 measurements. Atmospheric Chemistry and Physics, 23(2): 1227–1257
CrossRef Google scholar
[130]
Shen L, Gao T, Zhao J, Wang L, Wang L, Liu L, Chen F, Xue J. (2014). Factory-level measurements on CO2 emission factors of cement production in China. Renewable & Sustainable Energy Reviews, 34: 337–349
CrossRef Google scholar
[131]
Shi Q, Zheng B, Zheng Y, Tong D, Liu Y, Ma H, Hong C, Geng G, Guan D, He K. . (2022). Co-benefits of CO2 emission reduction from China’s clean air actions between 2013–2020. Nature Communications, 13(1): 5061
CrossRef Google scholar
[132]
Silva S J, Arellano A F. (2017). Characterizing regional-scale combustion using satellite retrievals of CO, NO2 and CO2. Remote Sensing, 9(7): 744
CrossRef Google scholar
[133]
Singh L A, Whittecar W R, Diprinzio M D, Herman J D, Ferringer M P, Reed P M. (2020). Low cost satellite constellations for nearly continuous global coverage. Nature Communications, 11(1): 200
CrossRef Google scholar
[134]
Solazzo E, Crippa M, Guizzardi D, Muntean M, Choulga M, Janssens-Maenhout G. (2021). Uncertainties in the emissions database for global atmospheric research (EDGAR) emission inventory of greenhouse gases. Atmospheric Chemistry and Physics, 21(7): 5655–5683
CrossRef Google scholar
[135]
Squadrito G L, Pryor W A. (1998). Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radical Biology & Medicine, 25(4−5): 392–403
CrossRef Google scholar
[136]
Stavrakou T, Müller J F, Boersma K F, de Smedt I, van der A R J. (2008). Assessing the distribution and growth rates of NOx emission sources by inverting a 10-year record of NO2 satellite columns. Geophysical Research Letters, 35(10): 2008GL033521
CrossRef Google scholar
[137]
Sun Y, Frankenberg C, Wood J D, Schimel D S, Jung M, Guanter L, Drewry D T, Verma M, Porcar-Castell A, Griffis T J. . (2017). OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science, 358(6360): eaam5747
CrossRef Google scholar
[138]
Suto H, Kataoka F, Kikuchi N, Knuteson R O, Butz A, Haun M, Buijs H, Shiomi K, Imai H, Kuze A. (2021). Thermal and near-infrared sensor for carbon observation Fourier transform spectrometer-2 (TANSO-FTS-2) on the Greenhouse gases Observing SATellite-2 (GOSAT-2) during its first year in orbit. Atmospheric Measurement Techniques, 14(3): 2013–2039
CrossRef Google scholar
[139]
Swain D L, Singh D, Touma D, Diffenbaugh N S. (2020). Attributing Extreme events to climate change: a new frontier in a warming world. One Earth, 2(6): 522–527
CrossRef Google scholar
[140]
Tang L, Jia M, Yang J, Li L, Bo X, Mi Z. (2023). Chinese industrial air pollution emissions based on the continuous emission monitoring systems network. Scientific Data, 10(1): 153
CrossRef Google scholar
[141]
Taylor T E, O’Dell C W, Baker D, Bruegge C, Chang A, Chapsky L, Chatterjee A, Cheng C, Chevallier F, Crisp D. . (2023). Evaluating the consistency between OCO-2 and OCO-3 XCO2 estimates derived from the NASA ACOS version 10 retrieval algorithm. Atmospheric Measurement Techniques, 16(12): 3173–3209
CrossRef Google scholar
[142]
Thompson D, Brown T D, Beér J M. (1972). NOx formation in combustion. Combustion and Flame, 19(1): 69–79
CrossRef Google scholar
[143]
Thoning K W, Tans P P, Komhyr W D. (1989). Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC data, 1974–1985. Journal of Geophysical Research, 94(D6): 8549–8565
CrossRef Google scholar
[144]
Tibrewal K, Ciais P, Saunois M, Martinez A, Lin X, Thanwerdas J, Deng Z, Chevallier F, Giron C, Albergel C. . (2024). Assessment of methane emissions from oil, gas and coal sectors across inventories and atmospheric inversions. Communications Earth & Environment, 5(1): 26
CrossRef Google scholar
[145]
Turner A J, Henze D K, Martin R V, Hakami A. (2012). The spatial extent of source influences on modeled column concentrations of short-lived species. Geophysical Research Letters, 39(12): 2012GL051832
CrossRef Google scholar
[146]
Ulybyshev Y. (2008). Satellite constellation design for complex coverage. Journal of Spacecraft and Rockets, 45(4): 843–849
CrossRef Google scholar
[147]
van Geffen J, Boersma K F, Eskes H, Sneep M, Ter Linden M, Zara M, Veefkind J P. (2020). S5P TROPOMI NO2 slant column retrieval: method, stability, uncertainties and comparisons with OMI. Atmospheric Measurement Techniques, 13(3): 1315–1335
CrossRef Google scholar
[148]
van Geffen J, Eskes H, Compernolle S, Pinardi G, Verhoelst T, Lambert J C, Sneep M, Ter Linden M, Ludewig A, Boersma K F. . (2022). Sentinel-5P TROPOMI NO2 retrieval: impact of version v2.2 improvements and comparisons with OMI and ground-based data. Atmospheric Measurement Techniques, 15(7): 2037–2060
CrossRef Google scholar
[149]
Vance T C, Huang T, Butler K A. (2024). Big data in Earth science: emerging practice and promise. Science, 383(6688): eadh9607
CrossRef Google scholar
[150]
Veefkind J P, Aben I, Mcmullan K, Förster H, de Vries J, Otter G, Claas J, Eskes H J, de Haan J F, Kleipool Q. . (2012). TROPOMI on the ESA Sentinel-5 Precursor: a GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sensing of Environment, 120: 70–83
CrossRef Google scholar
[151]
Velazco V A, Buchwitz M, Bovensmann H, Reuter M, Schneising O, Heymann J, Krings T, Gerilowski K, Burrows J P. (2011). Towards space based verification of CO2 emissions from strong localized sources: fossil fuel power plant emissions as seen by a CarbonSat constellation. Atmospheric Measurement Techniques, 4(12): 2809–2822
CrossRef Google scholar
[152]
Wang H, Jiang F, Wang J, Ju W, Chen J M. (2019). Terrestrial ecosystem carbon flux estimated using GOSAT and OCO-2 XCO2 retrievals. Atmospheric Chemistry and Physics, 19(18): 12067–12082
CrossRef Google scholar
[153]
Wei J, Liu S, Li Z, Liu C, Qin K, Liu X, Pinker R T, Dickerson R R, Lin J, Boersma K F. . (2022). Ground-Level NO2 Surveillance from space across China for high resolution using interpretable spatiotemporally weighted artificial intelligence. Environmental Science & Technology, 56(14): 9988–9998
CrossRef Google scholar
[154]
Weir B, Crisp D, O’Dell C W, Basu S, Chatterjee A, Kolassa J, Oda T, Pawson S, Poulter B, Zhang Z. . (2021). Regional impacts of COVID-19 on carbon dioxide detected worldwide from space. Science Advances, 7(45): eabf9415
CrossRef Google scholar
[155]
Winker D M, Vaughan M A, Omar A, Hu Y, Powell K A, Liu Z, Hunt W H, Young S A. (2009). Overview of the CALIPSO mission and CALIOP data processing algorithms. Journal of Atmospheric and Oceanic Technology, 26(11): 2310–2323
CrossRef Google scholar
[156]
Wren S N, Mclinden C A, Griffin D, Li S M, Cober S G, Darlington A, Hayden K, Mihele C, Mittermeier R L, Wheeler M J. . (2023). Aircraft and satellite observations reveal historical gap between top–down and bottom–up CO2 emissions from Canadian oil sands. PNAS Nexus, 2(5): pgad140
CrossRef Google scholar
[157]
Wu D, Lin J C, Fasoli B, Oda T, Ye X, Lauvaux T, Yang E G, Kort E A. (2018). A Lagrangian approach towards extracting signals of urban CO2 emissions from satellite observations of atmospheric column CO2 (XCO2): X-Stochastic Time-Inverted Lagrangian Transport model (“X-STILT v1”). Geoscientific Model Development, 11(12): 4843–4871
CrossRef Google scholar
[158]
Wu D, Lin J C, Oda T, Kort E A. (2020). Space-based quantification of per capita CO2 emissions from cities. Environmental Research Letters, 15(3): 035004
CrossRef Google scholar
[159]
Xu R, Tong D, Davis S J, Qin X, Cheng J, Shi Q, Liu Y, Chen C, Yan L, Yan X. . (2023). Plant-by-plant decarbonization strategies for the global steel industry. Nature Climate Change, 13(10): 1067–1074
CrossRef Google scholar
[160]
Xu T, Zhang C, Xue J, Hu Q, Xing C, Liu C. (2024). Estimating hourly nitrogen oxide emissions over East Asia from geostationary satellite measurements. Environmental Science & Technology Letters, 11(2): 122–129
CrossRef Google scholar
[161]
Yang D, Boesch H, Liu Y, Somkuti P, Cai Z, Chen X, Di Noia A, Lin C, Lu N, Lyu D. . (2020). Toward high precision XCO2 retrievals from tansat observations: retrieval improvement and validation against TCCON measurements. Journal of Geophysical Research: Atmospheres, 125(22): e2020JD032794
CrossRef Google scholar
[162]
Yang D, Liu Y, Cai Z, Chen X, Yao L, Lu D. (2018). First global carbon dioxide maps produced from TanSat measurements. Advances in Atmospheric Sciences, 35(6): 621–623
CrossRef Google scholar
[163]
Yang E G, Kort E A, Ott L E, Oda T, Lin J C. (2023). Using space-based CO2 and NO2 observations to estimate urban CO2 emissions. Journal of Geophysical Research: Atmospheres, 128(6): e2022JD037736
CrossRef Google scholar
[164]
Yang J, Gong P, Fu R, Zhang M, Chen J, Liang S, Xu B, Shi J, Dickinson R. (2013). The role of satellite remote sensing in climate change studies. Nature Climate Change, 3(10): 875–883
CrossRef Google scholar
[165]
Ye X, Lauvaux T, Kort E A, Oda T, Feng S, Lin J C, Yang E G, Wu D. (2020). Constraining fossil fuel CO2 emissions from urban area using OCO-2 observations of total column CO2. Journal of Geophysical Research: Atmospheres, 125(8): e2019JD030528
CrossRef Google scholar
[166]
Yuan X, Wang Y, Ji P, Wu P, Sheffield J, Otkin J A. (2023). A global transition to flash droughts under climate change. Science, 380(6641): 187–191
CrossRef Google scholar
[167]
Zhang C, Liu C, Chan K L, Hu Q, Liu H, Li B, Xing C, Tan W, Zhou H, Si F. . (2020). First observation of tropospheric nitrogen dioxide from the environmental trace gases monitoring instrument onboard the GaoFen-5 satellite. Light, Science & Applications, 9(1): 66
CrossRef Google scholar
[168]
Zhang Q, Boersma K F, Zhao B, Eskes H, Chen C, Zheng H, Zhang X. (2023). Quantifying daily NOx and CO2 emissions from Wuhan using satellite observations from TROPOMI and OCO-2. Atmospheric Chemistry and Physics, 23(1): 551–563
CrossRef Google scholar
[169]
Zhao C, Wang Y. (2009). Assimilated inversion of NOx emissions over east Asia using OMI NO2 column measurements. Geophysical Research Letters, 36(6): 2008GL037123
CrossRef Google scholar
[170]
Zhao H, He W, Cheng J, Liu Y, Zheng Y, Tian H, He K, Lei Y, Zhang Q. (2024). Heterogeneities in regional air pollutant emission mitigation across China during 2012–2020. Earth’s Future, 12(3): e2023EF004139
CrossRef Google scholar
[171]
Zheng B, Chevallier F, Ciais P, Broquet G, Wang Y, Lian J, Zhao Y. (2020a). Observing carbon dioxide emissions over China’s cities and industrial areas with the Orbiting Carbon Observatory-2. Atmospheric Chemistry and Physics, 20(14): 8501–8510
CrossRef Google scholar
[172]
Zheng B, Ciais P, Chevallier F, Yang H, Canadell J G, Chen Y, van der Velde I R, Aben I, Chuvieco E, Davis S J. . (2023). Record-high CO2 emissions from boreal fires in 2021. Science, 379(6635): 912–917
CrossRef Google scholar
[173]
Zheng B, Geng G, Ciais P, Davis S J, Martin R V, Meng J, Wu N, Chevallier F, Broquet G, Boersma F. . (2020b). Satellite-based estimates of decline and rebound in China’s CO2 emissions during COVID-19 pandemic. Science Advances, 6(49): eabd4998
CrossRef Google scholar
[174]
Zheng B, Tong D, Li M, Liu F, Hong C, Geng G, Li H, Li X, Peng L, Qi J. . (2018). Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmospheric Chemistry and Physics, 18(19): 14095–14111
CrossRef Google scholar
[175]
Zheng B, Zhang Q, Tong D, Chen C, Hong C, Li M, Geng G, Lei Y, Huo H, He K. (2017). Resolution dependence of uncertainties in gridded emission inventories: a case study in Hebei, China. Atmospheric Chemistry and Physics, 17(2): 921–933
CrossRef Google scholar
[176]
Zheng T, Nassar R, Baxter M. (2019). Estimating power plant CO2 emission using OCO-2 XCO2 and high resolution WRF-Chem simulations. Environmental Research Letters, 14(8): 085001
CrossRef Google scholar
[177]
ZhuX, GaoY (2017). Comparison of intelligent algorithms to design satellite constellations for enhanced coverage capability. In: Proceedings of the 10th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China
[178]
Zoogman P, Liu X, Suleiman R M, Pennington W F, Flittner D E, Al-Saadi J A, Hilton B B, Nicks D K, Newchurch M J, Carr J L. . (2017). Tropospheric emissions: monitoring of pollution (TEMPO). Journal of Quantitative Spectroscopy & Radiative Transfer, 186: 17–39
CrossRef Google scholar
[179]
zu CastellW, Ruhnke R, BouwerL M, BrixH, Dietrich P, DranschD, FrickenhausS, Greinert J, PetzoldA (2022). Integrating Data Science and Earth Science: Challenges and Solutions. Berlin: Springer International Publishing

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 42105094).

Conflict of Interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at https://doi.org/10.1007/s11783-025-1922-x and is accessible for authorized users.

Open Access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

RIGHTS & PERMISSIONS

2024 Higher Education Press
AI Summary AI Mindmap
PDF(5056 KB)

Accesses

Citations

Detail

Sections
Recommended

/