Monitoring fossil fuel CO2 emissions from co-emitted NO2 observed from space: progress, challenges, and future perspectives
Hui Li, Jiaxin Qiu, Kexin Zhang, Bo Zheng
Monitoring fossil fuel CO2 emissions from co-emitted NO2 observed from space: progress, challenges, and future perspectives
● CO2 emission monitoring supports achieving Nationally Determined Contributions. | |
● Co-emitted NO x and CO2 in fuel combustion enable NO2-based CO2 emission inversion. | |
● Structural and data uncertainties challenge researchers but guide future pathway. | |
● Interdisciplinary collaboration is crucial for advancing CO2 emission inversion. |
Developing an anthropogenic carbon dioxides (CO2) emissions monitoring and verification support (MVS) capacity is essential to support the Global Stocktake (GST) and ratchet up Nationally Determined Contributions (NDCs). The 2019 IPCC refinement proposes top-down inversed CO2 emissions, primarily from fossil fuel (FFCO2), as a viable emission dataset. Despite substantial progress in directly inferring FFCO2 emissions from CO2 observations, substantial challenges remain, particularly in distinguishing local CO2 enhancements from the high background due to the long atmospheric lifetime. Alternatively, using short-lived and co-emitted nitrogen dioxide (NO2) as a proxy in FFCO2 emission inversion has gained prominence. This methodology is broadly categorized into plume-based and emission ratios (ERs)-based inversion methods. In the plume-based methods, NO2 observations act as locators, constraints, and validators for deciphering CO2 plumes downwind of sources, typically at point source and city scales. The ERs-based inversion approach typically consists of two steps: inferring NO2-based nitrogen oxides (NOx) emissions and converting NOx to CO2 emissions using CO2-to-NOx ERs. While integrating NO2 observations into FFCO2 emission inversion offers advantages over the direct CO2-based methods, uncertainties persist, including both structural and data-related uncertainties. Addressing these uncertainties is a primary focus for future research, which includes deploying next-generation satellites and developing advanced inversion systems. Besides, data caveats are necessary when releasing data to users to prevent potential misuse. Advancing NO2-based CO2 emission inversion requires interdisciplinary collaboration across multiple communities of remote sensing, emission inventory, transport model improvement, and atmospheric inversion algorithm development.
Fossil fuel CO2 emissions / CO2 satellites / NO2 satellites / Emission inversion methods / Uncertainty management / Future perspectives
Bo Zheng is an associate professor at Tsinghua Shenzhen International Graduate School. He received B.S. and Ph.D. degrees from Tsinghua University in Environmental Engineering. Then he completed a four-year postdoctoral training at the Laboratory for Sciences of Climate and Environment in France before joining Tsinghua Shenzhen International Graduate School as an Assistant Professor in 2021. He focuses on the atmospheric carbon cycle and has developed a variety of techniques to analyze the sources and sinks of atmospheric constituents (e.g., greenhouse gases and air pollutants) based on satellite remote sensing. He has published over 150 peer-reviewed articles, which have received over 27000 times citations with an H-index of 66 (Google scholar)
[1] |
Abel D, Holloway T, Kladar R M, Meier P, Ahl D, Harkey M, Patz J. (2017). Response of power plant emissions to ambient temperature in the Eastern United States. Environmental Science & Technology, 51(10): 5838–5846
CrossRef
Google scholar
|
[2] |
Ammoura L, Xueref-Remy I, Gros V, Baudic A, Bonsang B, Petit J E, Perrussel O, Bonnaire N, Sciare J, Chevallier F. (2014). Atmospheric measurements of ratios between CO2 and co-emitted species from traffic: a tunnel study in the Paris megacity. Atmospheric Chemistry and Physics, 14(23): 12871–12882
CrossRef
Google scholar
|
[3] |
Attermeyer K, Casas-Ruiz J P, Fuss T, Pastor A, Cauvy-Fraunié S, Sheath D, Nydahl A C, Doretto A, Portela A P, Doyle B C.
CrossRef
Google scholar
|
[4] |
Bares R, Lin J C, Hoch S W, Baasandorj M, Mendoza D L, Fasoli B, Mitchell L, Catharine D, Stephens B B. (2018). The wintertime covariation of CO2 and criteria pollutants in an urban valley of the Western United States. Journal of Geophysical Research. Atmospheres, 123(5): 2684–2703
CrossRef
Google scholar
|
[5] |
Beirle S, Boersma K F, Platt U, Lawrence M G, Wagner T. (2011). Megacity emissions and lifetimes of nitrogen oxides probed from space. Science, 333(6050): 1737–1739
CrossRef
Google scholar
|
[6] |
Beirle S, Borger C, Dörner S, Li A, Hu Z, Liu F, Wang Y, Wagner T. (2019). Pinpointing nitrogen oxide emissions from space. Science Advances, 5(11): eaax9800
CrossRef
Google scholar
|
[7] |
Beirle S, Borger C, Jost A, Wagner T. (2023). Improved catalog of NOx point source emissions (version 2). Earth System Science Data, 15(7): 3051–3073
CrossRef
Google scholar
|
[8] |
Berezin E V, Konovalov I B, Ciais P, Richter A, Tao S, Janssens-Maenhout G, Beekmann M, Schulze E D. (2013). Multiannual changes of CO2 emissions in China: indirect estimates derived from satellite measurements of tropospheric NO2 columns. Atmospheric Chemistry and Physics, 13(18): 9415–9438
CrossRef
Google scholar
|
[9] |
BerndS, Jean-Loup B Z, ArminL S, YasjkaM (2019). The European CO2 monitoring mission: observing anthropogenic greenhouse gas emissions from space. Proc. SPIE 11180, International Conference on Space Optics—ICSO 2018, 111800M (12 July 2019, Chania, Greece)
|
[10] |
BerndS, Valerie F, BézyJ L, MeijerY, DurandY, Courrèges-LacosteG B, PachotC, Löscher A, NettH, MinoglouK, et al. (2021). The Copernicus CO2M mission for monitoring anthropogenic carbon dioxide emissions from space. Proc. SPIE 11852, International Conference on Space Optics — ICSO 2020, 118523M (11 June 2021, Online Only)
|
[11] |
Boersma K F, Jacob D J, Trainic M, Rudich Y, Desmedt I, Dirksen R, Eskes H J. (2009). Validation of urban NO2 concentrations and their diurnal and seasonal variations observed from the SCIAMACHY and OMI sensors using in situ surface measurements in Israeli cities. Atmospheric Chemistry and Physics, 9(12): 3867–3879
CrossRef
Google scholar
|
[12] |
Bovensmann H, Buchwitz M, Burrows J P, Reuter M, Krings T, Gerilowski K, Schneising O, Heymann J, Tretner A, Erzinger J. (2010). A remote sensing technique for global monitoring of power plant CO2 emissions from space and related applications. Atmospheric Measurement Techniques, 3(4): 781–811
CrossRef
Google scholar
|
[13] |
Bovensmann H, Burrows J P, Buchwitz M, Frerick J, Noël S, Rozanov V V, Chance K V, Goede A P H. (1999). SCIAMACHY: mission objectives and measurement modes. Journal of the Atmospheric Sciences, 56(2): 127–150
CrossRef
Google scholar
|
[14] |
Broquet G, Bréon F M, Renault E, Buchwitz M, Reuter M, Bovensmann H, Chevallier F, Wu L, Ciais P. (2018). The potential of satellite spectro-imagery for monitoring CO2 emissions from large cities. Atmospheric Measurement Techniques, 11(2): 681–708
CrossRef
Google scholar
|
[15] |
Buchwitz M, Reuter M, Noël S, Bramstedt K, Schneising O, Hilker M, Fuentes Andrade B, Bovensmann H, Burrows J P, Di Noia A.
CrossRef
Google scholar
|
[16] |
Burrows J P, Hölzle E, Goede A P H, Visser H, Fricke W. (1995). SCIAMACHY: scanning imaging absorption spectrometer for atmospheric chartography. Acta Astronautica, 35(7): 445–451
CrossRef
Google scholar
|
[17] |
Burrows J P, Weber M, Buchwitz M, Rozanov V, Ladstätter-Weißenmayer A, Richter A, Debeek R, Hoogen R, Bramstedt K, Eichmann K U.
CrossRef
Google scholar
|
[18] |
Byrne B, Baker D F, Basu S, Bertolacci M, Bowman K W, Carroll D, Chatterjee A, Chevallier F, Ciais P, Cressie N.
CrossRef
Google scholar
|
[19] |
Chatterjee A, Gierach M M, Sutton A J, Feely R A, Crisp D, Eldering A, Gunson M R, O’Dell C W, Stephens B B, Schimel D S. (2017). Influence of El Niño on atmospheric CO2 over the tropical Pacific Ocean: findings from NASA’s OCO-2 mission. Science, 358(6360): eaam5776
CrossRef
Google scholar
|
[20] |
Chevallier F, Broquet G, Zheng B, Ciais P, Eldering A. (2022). Large CO2 emitters as seen from satellite: comparison to a gridded global emission inventory. Geophysical Research Letters, 49(5): e2021GL097540
CrossRef
Google scholar
|
[21] |
Chevallier F, Zheng B, Broquet G, Ciais P, Liu Z, Davis S J, Deng Z, Wang Y, Bréon F-M, O’Dell C W. (2020). Local anomalies in the column-averaged dry air mole fractions of carbon dioxide across the globe during the first months of the coronavirus recession. Geophysical Research Letters, 47(22): e2020GL090244
CrossRef
Google scholar
|
[22] |
Choulga M, Janssens-Maenhout G, Super I, Solazzo E, Agusti-Panareda A, Balsamo G, Bousserez N, Crippa M, Denier Van Der Gon H, Engelen R.
CrossRef
Google scholar
|
[23] |
Ciais P, Dolman A J, Bombelli A, Duren R, Peregon A, Rayner P J, Miller C, Gobron N, Kinderman G, Marland G.
CrossRef
Google scholar
|
[24] |
Cooper M, Martin R V, Padmanabhan A, Henze D K. (2017). Comparing mass balance and adjoint methods for inverse modeling of nitrogen dioxide columns for global nitrogen oxide emissions. Journal of Geophysical Research. Atmospheres, 122(8): 4718–4734
CrossRef
Google scholar
|
[25] |
Cooper M J, Martin R V, Hammer M S, Levelt P F, Veefkind P, Lamsal L N, Krotkov N A, Brook J R, Mclinden C A. (2022). Global fine-scale changes in ambient NO2 during COVID-19 lockdowns. Nature, 601(7893): 380–387
CrossRef
Google scholar
|
[26] |
Correa S M. (1993). A Review of NOx Formation Under Gas-Turbine Combustion Conditions. Combustion Science and Technology, 87(1−6): 329–362
CrossRef
Google scholar
|
[27] |
Crisp D, Pollock H R, Rosenberg R, Chapsky L, Lee R A M, Oyafuso F A, Frankenberg C, O’Dell C W, Bruegge C J, Doran G B.
CrossRef
Google scholar
|
[28] |
Cusworth D H, Thorpe A K, Miller C E, Ayasse A K, Jiorle R, Duren R M, Nassar R, Mastrogiacomo J P, Nelson R R. (2023). Two years of satellite-based carbon dioxide emission quantification at the world’s largest coal-fired power plants. Atmospheric Chemistry and Physics, 23(22): 14577–14591
CrossRef
Google scholar
|
[29] |
de Foy B, Schauer J J. (2022). An improved understanding of NOx emissions in South Asian megacities using TROPOMI NO2 retrievals. Environmental Research Letters, 17(2): 024006
CrossRef
Google scholar
|
[30] |
del Portillo I, Cameron B G, Crawley E F. (2019). A technical comparison of three low earth orbit satellite constellation systems to provide global broadband. Acta Astronautica, 159: 123–135
CrossRef
Google scholar
|
[31] |
Dumont Le Brazidec J, Vanderbecken P, Farchi A, Bocquet M, Lian J, Broquet G, Kuhlmann G, Danjou A, Lauvaux T. (2023). Segmentation of XCO2 images with deep learning: application to synthetic plumes from cities and power plants. Geoscientific Model Development, 16(13): 3997–4016
CrossRef
Google scholar
|
[32] |
Dumont Le Brazidec J, Vanderbecken P, Farchi A, Broquet G, Kuhlmann G, Bocquet M. (2024). Deep learning applied to CO2 power plant emissions quantification using simulated satellite images. Geoscientific Model Development, 17(5): 1995–2014
CrossRef
Google scholar
|
[33] |
Eby M, Zickfeld K, Montenegro A, Archer D, Meissner K J, Weaver A J. (2009). Lifetime of anthropogenic climate change: millennial time scales of potential CO2 and surface temperature perturbations. Journal of Climate, 22(10): 2501–2511
CrossRef
Google scholar
|
[34] |
Editorial . (2023). Global stocktake and beyond. Nature Climate Change, 13(10): 999
CrossRef
Google scholar
|
[35] |
Eduardo Calvo BuendiaS G, Limmeechokchai B, Pipatti R, Rojas Y, Sturgiss R, Tanabe K, Wirth T, Romano D J W, Garg A, Weitz M M, et al. (2019). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories_Overview. Genève: The Intergovernmental Panel on Climate Change
|
[36] |
Eldering A, Taylor T E, O’Dell C W, Pavlick R. (2019). The OCO-3 mission: measurement objectives and expected performance based on 1 year of simulated data. Atmospheric Measurement Techniques, 12(4): 2341–2370
CrossRef
Google scholar
|
[37] |
Eldering A, Wennberg P O, Crisp D, Schimel D S, Gunson M R, Chatterjee A, Liu J, Schwandner F M, Sun Y, O’Dell C W.
CrossRef
Google scholar
|
[38] |
EuropeanC, Ciais P, Palmer P, Scholze M, Kentarchos A, Brunhes T, Dolman H, Husband R, Holmlund K, Engelen R, et al. (2017). An Operational Anthropogenic CO2 Emissions Monitoring & Verification System: Baseline Requirements, Model Components and Functional Architecture. Brussels: Publications Office of the European Union
|
[39] |
Feng S, Jiang F, Wang H, Liu Y, He W, Wang H, Shen Y, Zhang L, Jia M, Ju W, Chen J M. (2024). China’s fossil fuel CO2 emissions estimated using surface observations of coemitted NO2. Environmental Science & Technology, 58(19): 8299–8312
CrossRef
Google scholar
|
[40] |
Finch D P, Palmer P I, Zhang T. (2022). Automated detection of atmospheric NO2 plumes from satellite data: a tool to help infer anthropogenic combustion emissions. Atmospheric Measurement Techniques, 15(3): 721–733
CrossRef
Google scholar
|
[41] |
Friedlingstein P, O’sullivan M, Jones M W, Andrew R M, Bakker D C E, Hauck J, Landschützer P, Le Quéré C, Luijkx I T, Peters G P.
CrossRef
Google scholar
|
[42] |
Fu Y, Sun W, Fan D, Zhang Z, Hao Y. (2022). An assessment of China’s industrial emission characteristics using satellite observations of XCO2, SO2, and NO2. Atmospheric Pollution Research, 13(8): 101486
CrossRef
Google scholar
|
[43] |
Fuentes Andrade B, Buchwitz M, Reuter M, Bovensmann H, Richter A, Boesch H, Burrows J P. (2024). A method for estimating localized CO2 emissions from co-located satellite XCO2 and NO2 images. Atmospheric Measurement Techniques, 17(3): 1145–1173
CrossRef
Google scholar
|
[44] |
Fujinawa T, Kuze A, Suto H, Shiomi K, Kanaya Y, Kawashima T, Kataoka F, Mori S, Eskes H, Tanimoto H. (2021). First concurrent observations of NO2 and CO2 from power plant plumes by airborne remote sensing. Geophysical Research Letters, 48(14): e2021GL092685
CrossRef
Google scholar
|
[45] |
Goldberg D L, Harkey M, de Foy B, Judd L, Johnson J, Yarwood G, Holloway T. (2022). Evaluating NOx emissions and their effect on O3 production in Texas using TROPOMI NO2 and HCHO. Atmospheric Chemistry and Physics, 22(16): 10875–10900
CrossRef
Google scholar
|
[46] |
Goldberg D L, Lu Z, Oda T, Lamsal L N, Liu F, Griffin D, Mclinden C A, Krotkov N A, Duncan B N, Streets D G. (2019a). Exploiting OMI NO2 satellite observations to infer fossil-fuel CO2 emissions from U.S. megacities. Science of the Total Environment, 695: 133805
CrossRef
Google scholar
|
[47] |
Goldberg D L, Lu Z, Streets D G, de Foy B, Griffin D, Mclinden C A, Lamsal L N, Krotkov N A, Eskes H. (2019b). Enhanced capabilities of TROPOMI NO2: estimating NOx from North American cities and power plants. Environmental Science & Technology, 53(21): 12594–12601
CrossRef
Google scholar
|
[48] |
Grange S K, Farren N J, Vaughan A R, Rose R A, Carslaw D C. (2019). Strong temperature dependence for light-duty diesel vehicle NOx emissions. Environmental Science & Technology, 53(11): 6587–6596
CrossRef
Google scholar
|
[49] |
Graven H D, Stephens B B, Guilderson T P, Campos T L, Schimel D S, Campbell J E, Keeling R F. (2009). Vertical profiles of biospheric and fossil fuel-derived CO2 and fossil fuel CO2: CO ratios from airborne measurements of Δ14C, CO2 and CO above Colorado, USA. Tellus B: Chemical and Physical Meteorology, 61: 536–546
CrossRef
Google scholar
|
[50] |
Gu D, Wang Y, Smeltzer C, Boersma K F. (2014). Anthropogenic emissions of NOx over China: reconciling the difference of inverse modeling results using GOME-2 and OMI measurements. Journal of Geophysical Research, D, Atmospheres, 119(12): 7732–7740
CrossRef
Google scholar
|
[51] |
HakkarainenJ, IalongoI, KoeneE, SzelągM E, TamminenJ, Kuhlmann G, BrunnerD (2022). Analyzing local carbon dioxide and nitrogen oxide emissions from space using the divergence method: an application to the synthetic SMARTCARB dataset. Frontiers in Remote Sensing, 3
|
[52] |
Hakkarainen J, Ialongo I, Oda T, Szeląg M E, O’Dell C W, Eldering A, Crisp D. (2023). Building a bridge: characterizing major anthropogenic point sources in the South African Highveld region using OCO-3 carbon dioxide snapshot area maps and Sentinel-5P/TROPOMI nitrogen dioxide columns. Environmental Research Letters, 18(3): 035003
CrossRef
Google scholar
|
[53] |
Hakkarainen J, Ialongo I, Tamminen J. (2016). Direct space-based observations of anthropogenic CO2 emission areas from OCO-2. Geophysical Research Letters, 43(21): 11400–11406
|
[54] |
Hao M, Zhang J, Niu R, Deng C, Liang H. (2018). Application of BeiDou navigation satellite system in emergency rescue of natural hazards: a case study for field geological survey of Qinghai−Tibet plateau. Geo-Spatial Information Science, 21(4): 294–301
CrossRef
Google scholar
|
[55] |
Hassinen S, Balis D, Bauer H, Begoin M, Delcloo A, Eleftheratos K, Gimeno Garcia S, Granville J, Grossi M, Hao N.
CrossRef
Google scholar
|
[56] |
He C, Lu X, Zhang Y, Liu Z, Jiang F, Sun Y, Gao M, Liu Y, Lin H, Yang J, Lin X, Wang Y, Hu C, Fan S. (2024a). Revisiting the quantification of power plant CO2 emissions in the United States and China from satellite: a comparative study using three top-down approaches. Remote Sensing of Environment, 308: 114192
CrossRef
Google scholar
|
[57] |
He Z, Gao L, Liang M, Zeng Z C. (2024b). A survey of methane point source emissions from coal mines in Shanxi province of China using AHSI on board Gaofen-5B. Atmospheric Measurement Techniques, 17(9): 2937–2956
CrossRef
Google scholar
|
[58] |
Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D.
CrossRef
Google scholar
|
[59] |
Heymann J, Reuter M, Buchwitz M, Schneising O, Bovensmann H, Burrows J P, Massart S, Kaiser J W, Crisp D. (2017). CO2 emission of Indonesian fires in 2015 estimated from satellite-derived atmospheric CO2 concentrations. Geophysical Research Letters, 44(3): 1537–1544
CrossRef
Google scholar
|
[60] |
Hong X, Zhang C, Tian Y, Zhu Y, Hao Y, Liu C. (2024). First TanSat CO2 retrieval over land and ocean using both nadir and glint spectroscopy. Remote Sensing of Environment, 304: 114053
CrossRef
Google scholar
|
[61] |
Hong X, Zhang P, Bi Y, Liu C, Sun Y, Wang W, Chen Z, Yin H, Zhang C, Tian Y, Liu J. (2022). Retrieval of Global carbon dioxide from tansat satellite and comprehensive validation with TCCON measurements and satellite observations. IEEE Transactions on Geoscience and Remote Sensing, 60: 1–16
CrossRef
Google scholar
|
[62] |
Ingmann P, Veihelmann B, Langen J, Lamarre D, Stark H, Courrèges-Lacoste G B. (2012). Requirements for the GMES Atmosphere Service and ESA’s implementation concept: sentinels-4/-5 and −5p. Remote Sensing of Environment, 120: 58–69
CrossRef
Google scholar
|
[63] |
IPCC(2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Volume 1 General Guidance and Reporting. Genève: The Intergovernmental Panel on Climate Change
|
[64] |
Jervis D, Mckeever J, Durak B O A, Sloan J J, Gains D, Varon D J, Ramier A, Strupler M, Tarrant E. (2021). The GHGSat-D imaging spectrometer. Atmospheric Measurement Techniques, 14(3): 2127–2140
CrossRef
Google scholar
|
[65] |
Jones M W, Peters G P, Gasser T, Andrew R M, Schwingshackl C, Gütschow J, Houghton R A, Friedlingstein P, Pongratz J, Le Quéré C. (2023). National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Scientific Data, 10(1): 155
CrossRef
Google scholar
|
[66] |
Joyce P, Ruiz Villena C, Huang Y, Webb A, Gloor M, Wagner F H, Chipperfield M P, Barrio Guilló R, Wilson C, Boesch H. (2023). Using a deep neural network to detect methane point sources and quantify emissions from PRISMA hyperspectral satellite images. Atmospheric Measurement Techniques, 16(10): 2627–2640
CrossRef
Google scholar
|
[67] |
Kiel M, Eldering A, Roten D D, Lin J C, Feng S, Lei R, Lauvaux T, Oda T, Roehl C M, Blavier J F.
CrossRef
Google scholar
|
[68] |
Kim H C, Chai T, Stein A, Kondragunta S. (2020a). Inverse modeling of fire emissions constrained by smoke plume transport using HYSPLIT dispersion model and geostationary satellite observations. Atmospheric Chemistry and Physics, 20(17): 10259–10277
CrossRef
Google scholar
|
[69] |
Kim J, Jeong U, Ahn M H, Kim J H, Park R J, Lee H, Song C H, Choi Y S, Lee K H, Yoo J M.
CrossRef
Google scholar
|
[70] |
Kong H, Lin J, Zhang R, Liu M, Weng H, Ni R, Chen L, Wang J, Yan Y, Zhang Q. (2019). High-resolution (0.05° × 0.05°) NOx emissions in the Yangtze River Delta inferred from OMI. Atmospheric Chemistry and Physics, 19(20): 12835–12856
CrossRef
Google scholar
|
[71] |
Konovalov I B, Berezin E V, Ciais P, Broquet G, Zhuravlev R V, Janssens-Maenhout G. (2016). Estimation of fossil-fuel CO2 emissions using satellite measurements of “proxy” species. Atmospheric Chemistry and Physics, 16(21): 13509–13540
CrossRef
Google scholar
|
[72] |
Kort E A, Frankenberg C, Miller C E, Oda T. (2012). Space-based observations of megacity carbon dioxide. Geophysical Research Letters, 39(17): 2012GL052738
CrossRef
Google scholar
|
[73] |
KuhlmannG, Henne S, MeijerY, BrunnerD (2021). Quantifying CO2 emissions of power plants with CO2 and NO2 imaging satellites. Frontiers in Remote Sensing, 2
|
[74] |
Kurchaba S, Sokolovsky A, Van Vliet J, Verbeek F J, Veenman C J. (2024). Sensitivity analysis for the detection of NO2 plumes from seagoing ships using TROPOMI data. Remote Sensing of Environment, 304: 304
CrossRef
Google scholar
|
[75] |
Kuze A, Suto H, Nakajima M, Hamazaki T. (2009). Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. Applied Optics, 48(35): 6716–6733
CrossRef
Google scholar
|
[76] |
Lamsal L N, Krotkov N A, Vasilkov A, Marchenko S, Qin W, Yang E S, Fasnacht Z, Joiner J, Choi S, Haffner D.
CrossRef
Google scholar
|
[77] |
Lange K, Richter A, Burrows J P. (2022). Variability of nitrogen oxide emission fluxes and lifetimes estimated from Sentinel-5P TROPOMI observations. Atmospheric Chemistry and Physics, 22(4): 2745–2767
CrossRef
Google scholar
|
[78] |
Lei R, Feng S, Danjou A, Broquet G, Wu D, Lin J C, O’Dell C W, Lauvaux T. (2021). Fossil fuel CO2 emissions over metropolitan areas from space: a multi-model analysis of OCO-2 data over Lahore, Pakistan. Remote Sensing of Environment, 264: 112625
CrossRef
Google scholar
|
[79] |
Lei R, Feng S, Xu Y, Tran S, Ramonet M, Grutter M, Garcia A, Campos-Pineda M, Lauvaux T. (2022). Reconciliation of asynchronous satellite-based NO2 and XCO2 enhancements with mesoscale modeling over two urban landscapes. Remote Sensing of Environment, 281: 113241
CrossRef
Google scholar
|
[80] |
LeiT, WangD, YuX, MaS, ZhaoW, Cui C, MengJ, TaoS, GuanD (2023). Global iron and steel plant CO2 emissions and carbon-neutrality pathways. Nature, 622, 514–520
|
[81] |
Lespinas F, Wang Y, Broquet G, Bréon F-M, Buchwitz M, Reuter M, Meijer Y, Loescher A, Janssens-Maenhout G, Zheng B.
CrossRef
Google scholar
|
[82] |
Levelt P F, van den Oord G H J, Dobber M R, Mälkki A, Visser H, de Vries J, Stammes P, Lundell J, Saari H.. (2006). The ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing, 44(5): 1093–1101
CrossRef
Google scholar
|
[83] |
Li C, Martin R V, Shephard M W, Cady-Pereira K, Cooper M J, Kaiser J, Lee C J, Zhang L, Henze D K. (2019). Assessing the iterative finite difference mass balance and 4D-var methods to derive ammonia emissions over North America using synthetic observations. Journal of Geophysical Research. Atmospheres, 124(7): 4222–4236
CrossRef
Google scholar
|
[84] |
Li H, Zheng B. (2023a). TROPOMI NO2 shows a fast recovery of China’s economy in the first quarter of 2023. Environmental Science & Technology Letters, 10(8): 635–641
|
[85] |
Li H, Zheng B, Ciais P, Boersma K F, Riess T C V W, Martin R V, Broquet G, Van Der A R, Li H, Hong C.
CrossRef
Google scholar
|
[86] |
Li J, Wang Y, Zhang R, Smeltzer C, Weinheimer A, Herman J, Boersma K F, Celarier E A, Long R W, Szykman J J.
CrossRef
Google scholar
|
[87] |
Li S, Wang S, Wu Q, Zhang Y, Ouyang D, Zheng H, Han L, Qiu X, Wen Y, Liu M.
CrossRef
Google scholar
|
[88] |
Lin J T, Martin R V, Boersma K F, Sneep M, Stammes P, Spurr R, Wang P, Van Roozendael M, Clémer K, Irie H. (2014). Retrieving tropospheric nitrogen dioxide from the Ozone Monitoring Instrument: effects of aerosols, surface reflectance anisotropy, and vertical profile of nitrogen dioxide. Atmospheric Chemistry and Physics, 14(3): 1441–1461
CrossRef
Google scholar
|
[89] |
Lin X, van der A R, de Laat J, Eskes H, Chevallier F, Ciais P, Deng Z, Geng Y, Song X, Ni X.
CrossRef
Google scholar
|
[90] |
Lindenmaier R, Dubey M K, Henderson B G, Butterfield Z T, Herman J R, Rahn T, Lee S H. (2014). Multiscale observations of CO2, 13CO2, and pollutants at four corners for emission verification and attribution. Proceedings of the National Academy of Sciences of the United States of America, 111(23): 8386–8391
CrossRef
Google scholar
|
[91] |
Liu F, Beirle S, Zhang Q, Dörner S, He K, Wagner T. (2016). NOx lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations. Atmospheric Chemistry and Physics, 16(8): 5283–5298
CrossRef
Google scholar
|
[92] |
Liu F, Duncan B N, Krotkov N A, Lamsal L N, Beirle S, Griffin D, Mclinden C A, Goldberg D L, Lu Z. (2020). A methodology to constrain carbon dioxide emissions from coal-fired power plants using satellite observations of co-emitted nitrogen dioxide. Atmospheric Chemistry and Physics, 20(1): 99–116
CrossRef
Google scholar
|
[93] |
Liu J, Bowman K W, Schimel D S, Parazoo N C, Jiang Z, Lee M, Bloom A A, Wunch D, Frankenberg C, Sun Y.
CrossRef
Google scholar
|
[94] |
Liu S, Valks P, Curci G, Chen Y, Shu L, Jin J, Sun S, Pu D, Li X, Li J.
|
[95] |
Liu Y, Wang J, Yao L, Chen X, Cai Z, Yang D, Yin Z, Gu S, Tian L, Lu N.
CrossRef
Google scholar
|
[96] |
Liu Z, Deng Z, Davis S, Ciais P. (2023). Monitoring global carbon emissions in 2022. Nature Reviews. Earth & Environment, 4(4): 205–206
CrossRef
Google scholar
|
[97] |
Liu Z, Deng Z, Zhu B, Ciais P, Davis S J, Tan J, Andrew R M, Boucher O, Arous S B, Canadell J G.
CrossRef
Google scholar
|
[98] |
Lu X, Ye X, Zhou M, Zhao Y, Weng H, Kong H, Li K, Gao M, Zheng B, Lin J.
CrossRef
Google scholar
|
[99] |
Luderer G, Madeddu S, Merfort L, Ueckerdt F, Pehl M, Pietzcker R, Rottoli M, Schreyer F, Bauer N, Baumstark L.
CrossRef
Google scholar
|
[100] |
MacDonald C G, Mastrogiacomo J P, Laughner J L, Hedelius J K, Nassar R, Wunch D. (2023). Estimating enhancement ratios of nitrogen dioxide, carbon monoxide and carbon dioxide using satellite observations. Atmospheric Chemistry and Physics, 23(6): 3493–3516
CrossRef
Google scholar
|
[101] |
Maral G, De Ridder J J, Evans B G, Richharia M. (1991). Low earth orbit satellite systems for communications. International Journal of Satellite Communications, 9(4): 209–225
CrossRef
Google scholar
|
[102] |
Martin R V, Jacob D J, Chance K, Kurosu T P, Palmer P I, Evans M J. (2003). Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns. Journal of Geophysical Research, 108(D17): 2003JD003453
CrossRef
Google scholar
|
[103] |
Massman W J. (1998). A review of the molecular diffusivities of H2O, CO2, CH4, CO, O3, SO2, NH3, N2O, NO, and NO2 in air, O2 and N2 near STP. Atmospheric Environment, 32(6): 1111–1127
CrossRef
Google scholar
|
[104] |
Meinshausen M, Lewis J, Mcglade C, Gutschow J, Nicholls Z, Burdon R, Cozzi L, Hackmann B. (2022). Realization of Paris Agreement pledges may limit warming just below 2 °C. Nature, 604(7905): 304–309
CrossRef
Google scholar
|
[105] |
Miyazaki K, Bowman K. (2023). Predictability of fossil fuel CO2 from air quality emissions. Nature Communications, 14(1): 1604
CrossRef
Google scholar
|
[106] |
Miyazaki K, Eskes H, Sudo K, Boersma K F, Bowman K, Kanaya Y. (2017). Decadal changes in global surface NOx emissions from multi-constituent satellite data assimilation. Atmospheric Chemistry and Physics, 17(2): 807–837
CrossRef
Google scholar
|
[107] |
Moon J, Choi Y, Jeon W, Kim H C, Pouyaei A, Jung J, Pan S, Kim S, Kim C H, Bak J.
CrossRef
Google scholar
|
[108] |
Nassar R, Hill T G, Mclinden C A, Wunch D, Jones D B A, Crisp D. (2017). Quantifying CO2 Emissions from Individual Power Plants From Space. Geophysical Research Letters, 44(19): 10045–10053
|
[109] |
Nassar R, Mastrogiacomo J P, Bateman-Hemphill W, Mccracken C, Macdonald C G, Hill T, O’Dell C W, Kiel M, Crisp D. (2021). Advances in quantifying power plant CO2 emissions with OCO-2. Remote Sensing of Environment, 264: 112579
CrossRef
Google scholar
|
[110] |
NassarR, Moeini O, MastrogiacomoJP, O’DellC W, NelsonR R, KielM, Chatterjee A, ElderingA, CrispD (2022). Tracking CO2 emission reductions from space: a case study at Europe’s largest fossil fuel power plant. Frontiers in Remote Sensing, 3
|
[111] |
Nassar R, Napier-Linton L, Gurney K R, Andres R J, Oda T, Vogel F R, Deng F. (2013). Improving the temporal and spatial distribution of CO2 emissions from global fossil fuel emission data sets. Journal of Geophysical Research. Atmospheres, 118(2): 917–933
CrossRef
Google scholar
|
[112] |
Nehrkorn T, Eluszkiewicz J, Wofsy S C, Lin J C, Gerbig C, Longo M, Freitas S. (2010). Coupled weather research and forecasting-stochastic time-inverted lagrangian transport (WRF–STILT) model. Meteorology and Atmospheric Physics, 107(1): 51–64
CrossRef
Google scholar
|
[113] |
Newman R, Noy I. (2023). The global costs of extreme weather that are attributable to climate change. Nature Communications, 14(1): 6103
CrossRef
Google scholar
|
[114] |
Olsen S C, Randerson J T. (2004). Differences between surface and column atmospheric CO2 and implications for carbon cycle research. Journal of Geophysical Research, 109(D2): 2003JD003968
CrossRef
Google scholar
|
[115] |
Ombadi M, Risser M D, Rhoades A M, Varadharajan C. (2023). A warming-induced reduction in snow fraction amplifies rainfall extremes. Nature, 619(7969): 305–310
CrossRef
Google scholar
|
[116] |
Palmer P I, Jacob D J, Fiore A M, Martin R V, Chance K, Kurosu T P. (2003). Mapping isoprene emissions over North America using formaldehyde column observations from space. Journal of Geophysical Research, 108(D6): 2002JD002153
CrossRef
Google scholar
|
[117] |
Park H, Jeong S, Park H, Labzovskii L D, Bowman K W. (2021). An assessment of emission characteristics of Northern Hemisphere cities using spaceborne observations of CO2, CO, and NO2. Remote Sensing of Environment, 254: 112246
CrossRef
Google scholar
|
[118] |
Park S S, Kozawa K, Fruin S, Mara S, Hsu Y K, Jakober C, Winer A, Herner J. (2011). Emission Factors for high-emitting vehicles based on on-road measurements of individual vehicle exhaust with a mobile measurement platform. Journal of the Air & Waste Management Association, 61(10): 1046–1056
CrossRef
Google scholar
|
[119] |
Penn E, Holloway T. (2020). Evaluating current satellite capability to observe diurnal change in nitrogen oxides in preparation for geostationary satellite missions. Environmental Research Letters, 15(3): 034038
CrossRef
Google scholar
|
[120] |
Pillai D, Buchwitz M, Gerbig C, Koch T, Reuter M, Bovensmann H, Marshall J, Burrows J P. (2016). Tracking city CO2 emissions from space using a high-resolution inverse modelling approach: a case study for Berlin, Germany. Atmospheric Chemistry and Physics, 16(15): 9591–9610
CrossRef
Google scholar
|
[121] |
Qu Z, Henze D K, Worden H M, Jiang Z, Gaubert B, Theys N, Wang W. (2022). Sector-based top-down estimates of NOx, SO2, and CO emissions in East Asia. Geophysical Research Letters, 49(2): e2021GL096009
CrossRef
Google scholar
|
[122] |
Reuter M, Buchwitz M, Hilboll A, Richter A, Schneising O, Hilker M, Heymann J, Bovensmann H, Burrows J P. (2014). Decreasing emissions of NOx relative to CO2 in East Asia inferred from satellite observations. Nature Geoscience, 7(11): 792–795
CrossRef
Google scholar
|
[123] |
Reuter M, Buchwitz M, Schneising O, Krautwurst S, O’Dell C W, Richter A, Bovensmann H, Burrows J P. (2019). Towards monitoring localized CO2 emissions from space: co-located regional CO2 and NO2 enhancements observed by the OCO-2 and S5P satellites. Atmospheric Chemistry and Physics, 19(14): 9371–9383
CrossRef
Google scholar
|
[124] |
Röser F, Widerberg O, Höhne N, Day T. (2020). Ambition in the making: analysing the preparation and implementation process of the Nationally Determined Contributions under the Paris Agreement. Climate Policy, 20(4): 415–429
CrossRef
Google scholar
|
[125] |
Santaren D, Broquet G, Bréon F M, Chevallier F, Siméoni D, Zheng B, Ciais P. (2021). A local- to national-scale inverse modeling system to assess the potential of spaceborne CO2 measurements for the monitoring of anthropogenic emissions. Atmospheric Measurement Techniques, 14(1): 403–433
CrossRef
Google scholar
|
[126] |
Schneising O, Buchwitz M, Reuter M, Heymann J, Bovensmann H, Burrows J P. (2011). Long-term analysis of carbon dioxide and methane column-averaged mole fractions retrieved from SCIAMACHY. Atmospheric Chemistry and Physics, 11(6): 2863–2880
CrossRef
Google scholar
|
[127] |
Schuit B J, Maasakkers J D, Bijl P, Mahapatra G, Van Den Berg A W, Pandey S, Lorente A, Borsdorff T, Houweling S, Varon D J.
CrossRef
Google scholar
|
[128] |
Schwandner F M, Gunson M R, Miller C E, Carn S A, Eldering A, Krings T, Verhulst K R, Schimel D S, Nguyen H M, Crisp D.
CrossRef
Google scholar
|
[129] |
Shah V, Jacob D J, Dang R, Lamsal L N, Strode S A, Steenrod S D, Boersma K F, Eastham S D, Fritz T M, Thompson C.
CrossRef
Google scholar
|
[130] |
Shen L, Gao T, Zhao J, Wang L, Wang L, Liu L, Chen F, Xue J. (2014). Factory-level measurements on CO2 emission factors of cement production in China. Renewable & Sustainable Energy Reviews, 34: 337–349
CrossRef
Google scholar
|
[131] |
Shi Q, Zheng B, Zheng Y, Tong D, Liu Y, Ma H, Hong C, Geng G, Guan D, He K.
CrossRef
Google scholar
|
[132] |
Silva S J, Arellano A F. (2017). Characterizing regional-scale combustion using satellite retrievals of CO, NO2 and CO2. Remote Sensing, 9(7): 744
CrossRef
Google scholar
|
[133] |
Singh L A, Whittecar W R, Diprinzio M D, Herman J D, Ferringer M P, Reed P M. (2020). Low cost satellite constellations for nearly continuous global coverage. Nature Communications, 11(1): 200
CrossRef
Google scholar
|
[134] |
Solazzo E, Crippa M, Guizzardi D, Muntean M, Choulga M, Janssens-Maenhout G. (2021). Uncertainties in the emissions database for global atmospheric research (EDGAR) emission inventory of greenhouse gases. Atmospheric Chemistry and Physics, 21(7): 5655–5683
CrossRef
Google scholar
|
[135] |
Squadrito G L, Pryor W A. (1998). Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radical Biology & Medicine, 25(4−5): 392–403
CrossRef
Google scholar
|
[136] |
Stavrakou T, Müller J F, Boersma K F, de Smedt I, van der A R J. (2008). Assessing the distribution and growth rates of NOx emission sources by inverting a 10-year record of NO2 satellite columns. Geophysical Research Letters, 35(10): 2008GL033521
CrossRef
Google scholar
|
[137] |
Sun Y, Frankenberg C, Wood J D, Schimel D S, Jung M, Guanter L, Drewry D T, Verma M, Porcar-Castell A, Griffis T J.
CrossRef
Google scholar
|
[138] |
Suto H, Kataoka F, Kikuchi N, Knuteson R O, Butz A, Haun M, Buijs H, Shiomi K, Imai H, Kuze A. (2021). Thermal and near-infrared sensor for carbon observation Fourier transform spectrometer-2 (TANSO-FTS-2) on the Greenhouse gases Observing SATellite-2 (GOSAT-2) during its first year in orbit. Atmospheric Measurement Techniques, 14(3): 2013–2039
CrossRef
Google scholar
|
[139] |
Swain D L, Singh D, Touma D, Diffenbaugh N S. (2020). Attributing Extreme events to climate change: a new frontier in a warming world. One Earth, 2(6): 522–527
CrossRef
Google scholar
|
[140] |
Tang L, Jia M, Yang J, Li L, Bo X, Mi Z. (2023). Chinese industrial air pollution emissions based on the continuous emission monitoring systems network. Scientific Data, 10(1): 153
CrossRef
Google scholar
|
[141] |
Taylor T E, O’Dell C W, Baker D, Bruegge C, Chang A, Chapsky L, Chatterjee A, Cheng C, Chevallier F, Crisp D.
CrossRef
Google scholar
|
[142] |
Thompson D, Brown T D, Beér J M. (1972). NOx formation in combustion. Combustion and Flame, 19(1): 69–79
CrossRef
Google scholar
|
[143] |
Thoning K W, Tans P P, Komhyr W D. (1989). Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC data, 1974–1985. Journal of Geophysical Research, 94(D6): 8549–8565
CrossRef
Google scholar
|
[144] |
Tibrewal K, Ciais P, Saunois M, Martinez A, Lin X, Thanwerdas J, Deng Z, Chevallier F, Giron C, Albergel C.
CrossRef
Google scholar
|
[145] |
Turner A J, Henze D K, Martin R V, Hakami A. (2012). The spatial extent of source influences on modeled column concentrations of short-lived species. Geophysical Research Letters, 39(12): 2012GL051832
CrossRef
Google scholar
|
[146] |
Ulybyshev Y. (2008). Satellite constellation design for complex coverage. Journal of Spacecraft and Rockets, 45(4): 843–849
CrossRef
Google scholar
|
[147] |
van Geffen J, Boersma K F, Eskes H, Sneep M, Ter Linden M, Zara M, Veefkind J P. (2020). S5P TROPOMI NO2 slant column retrieval: method, stability, uncertainties and comparisons with OMI. Atmospheric Measurement Techniques, 13(3): 1315–1335
CrossRef
Google scholar
|
[148] |
van Geffen J, Eskes H, Compernolle S, Pinardi G, Verhoelst T, Lambert J C, Sneep M, Ter Linden M, Ludewig A, Boersma K F.
CrossRef
Google scholar
|
[149] |
Vance T C, Huang T, Butler K A. (2024). Big data in Earth science: emerging practice and promise. Science, 383(6688): eadh9607
CrossRef
Google scholar
|
[150] |
Veefkind J P, Aben I, Mcmullan K, Förster H, de Vries J, Otter G, Claas J, Eskes H J, de Haan J F, Kleipool Q.
CrossRef
Google scholar
|
[151] |
Velazco V A, Buchwitz M, Bovensmann H, Reuter M, Schneising O, Heymann J, Krings T, Gerilowski K, Burrows J P. (2011). Towards space based verification of CO2 emissions from strong localized sources: fossil fuel power plant emissions as seen by a CarbonSat constellation. Atmospheric Measurement Techniques, 4(12): 2809–2822
CrossRef
Google scholar
|
[152] |
Wang H, Jiang F, Wang J, Ju W, Chen J M. (2019). Terrestrial ecosystem carbon flux estimated using GOSAT and OCO-2 XCO2 retrievals. Atmospheric Chemistry and Physics, 19(18): 12067–12082
CrossRef
Google scholar
|
[153] |
Wei J, Liu S, Li Z, Liu C, Qin K, Liu X, Pinker R T, Dickerson R R, Lin J, Boersma K F.
CrossRef
Google scholar
|
[154] |
Weir B, Crisp D, O’Dell C W, Basu S, Chatterjee A, Kolassa J, Oda T, Pawson S, Poulter B, Zhang Z.
CrossRef
Google scholar
|
[155] |
Winker D M, Vaughan M A, Omar A, Hu Y, Powell K A, Liu Z, Hunt W H, Young S A. (2009). Overview of the CALIPSO mission and CALIOP data processing algorithms. Journal of Atmospheric and Oceanic Technology, 26(11): 2310–2323
CrossRef
Google scholar
|
[156] |
Wren S N, Mclinden C A, Griffin D, Li S M, Cober S G, Darlington A, Hayden K, Mihele C, Mittermeier R L, Wheeler M J.
CrossRef
Google scholar
|
[157] |
Wu D, Lin J C, Fasoli B, Oda T, Ye X, Lauvaux T, Yang E G, Kort E A. (2018). A Lagrangian approach towards extracting signals of urban CO2 emissions from satellite observations of atmospheric column CO2 (XCO2): X-Stochastic Time-Inverted Lagrangian Transport model (“X-STILT v1”). Geoscientific Model Development, 11(12): 4843–4871
CrossRef
Google scholar
|
[158] |
Wu D, Lin J C, Oda T, Kort E A. (2020). Space-based quantification of per capita CO2 emissions from cities. Environmental Research Letters, 15(3): 035004
CrossRef
Google scholar
|
[159] |
Xu R, Tong D, Davis S J, Qin X, Cheng J, Shi Q, Liu Y, Chen C, Yan L, Yan X.
CrossRef
Google scholar
|
[160] |
Xu T, Zhang C, Xue J, Hu Q, Xing C, Liu C. (2024). Estimating hourly nitrogen oxide emissions over East Asia from geostationary satellite measurements. Environmental Science & Technology Letters, 11(2): 122–129
CrossRef
Google scholar
|
[161] |
Yang D, Boesch H, Liu Y, Somkuti P, Cai Z, Chen X, Di Noia A, Lin C, Lu N, Lyu D.
CrossRef
Google scholar
|
[162] |
Yang D, Liu Y, Cai Z, Chen X, Yao L, Lu D. (2018). First global carbon dioxide maps produced from TanSat measurements. Advances in Atmospheric Sciences, 35(6): 621–623
CrossRef
Google scholar
|
[163] |
Yang E G, Kort E A, Ott L E, Oda T, Lin J C. (2023). Using space-based CO2 and NO2 observations to estimate urban CO2 emissions. Journal of Geophysical Research: Atmospheres, 128(6): e2022JD037736
CrossRef
Google scholar
|
[164] |
Yang J, Gong P, Fu R, Zhang M, Chen J, Liang S, Xu B, Shi J, Dickinson R. (2013). The role of satellite remote sensing in climate change studies. Nature Climate Change, 3(10): 875–883
CrossRef
Google scholar
|
[165] |
Ye X, Lauvaux T, Kort E A, Oda T, Feng S, Lin J C, Yang E G, Wu D. (2020). Constraining fossil fuel CO2 emissions from urban area using OCO-2 observations of total column CO2. Journal of Geophysical Research: Atmospheres, 125(8): e2019JD030528
CrossRef
Google scholar
|
[166] |
Yuan X, Wang Y, Ji P, Wu P, Sheffield J, Otkin J A. (2023). A global transition to flash droughts under climate change. Science, 380(6641): 187–191
CrossRef
Google scholar
|
[167] |
Zhang C, Liu C, Chan K L, Hu Q, Liu H, Li B, Xing C, Tan W, Zhou H, Si F.
CrossRef
Google scholar
|
[168] |
Zhang Q, Boersma K F, Zhao B, Eskes H, Chen C, Zheng H, Zhang X. (2023). Quantifying daily NOx and CO2 emissions from Wuhan using satellite observations from TROPOMI and OCO-2. Atmospheric Chemistry and Physics, 23(1): 551–563
CrossRef
Google scholar
|
[169] |
Zhao C, Wang Y. (2009). Assimilated inversion of NOx emissions over east Asia using OMI NO2 column measurements. Geophysical Research Letters, 36(6): 2008GL037123
CrossRef
Google scholar
|
[170] |
Zhao H, He W, Cheng J, Liu Y, Zheng Y, Tian H, He K, Lei Y, Zhang Q. (2024). Heterogeneities in regional air pollutant emission mitigation across China during 2012–2020. Earth’s Future, 12(3): e2023EF004139
CrossRef
Google scholar
|
[171] |
Zheng B, Chevallier F, Ciais P, Broquet G, Wang Y, Lian J, Zhao Y. (2020a). Observing carbon dioxide emissions over China’s cities and industrial areas with the Orbiting Carbon Observatory-2. Atmospheric Chemistry and Physics, 20(14): 8501–8510
CrossRef
Google scholar
|
[172] |
Zheng B, Ciais P, Chevallier F, Yang H, Canadell J G, Chen Y, van der Velde I R, Aben I, Chuvieco E, Davis S J.
CrossRef
Google scholar
|
[173] |
Zheng B, Geng G, Ciais P, Davis S J, Martin R V, Meng J, Wu N, Chevallier F, Broquet G, Boersma F.
CrossRef
Google scholar
|
[174] |
Zheng B, Tong D, Li M, Liu F, Hong C, Geng G, Li H, Li X, Peng L, Qi J.
CrossRef
Google scholar
|
[175] |
Zheng B, Zhang Q, Tong D, Chen C, Hong C, Li M, Geng G, Lei Y, Huo H, He K. (2017). Resolution dependence of uncertainties in gridded emission inventories: a case study in Hebei, China. Atmospheric Chemistry and Physics, 17(2): 921–933
CrossRef
Google scholar
|
[176] |
Zheng T, Nassar R, Baxter M. (2019). Estimating power plant CO2 emission using OCO-2 XCO2 and high resolution WRF-Chem simulations. Environmental Research Letters, 14(8): 085001
CrossRef
Google scholar
|
[177] |
ZhuX, GaoY (2017). Comparison of intelligent algorithms to design satellite constellations for enhanced coverage capability. In: Proceedings of the 10th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China
|
[178] |
Zoogman P, Liu X, Suleiman R M, Pennington W F, Flittner D E, Al-Saadi J A, Hilton B B, Nicks D K, Newchurch M J, Carr J L.
CrossRef
Google scholar
|
[179] |
zu CastellW, Ruhnke R, BouwerL M, BrixH, Dietrich P, DranschD, FrickenhausS, Greinert J, PetzoldA (2022). Integrating Data Science and Earth Science: Challenges and Solutions. Berlin: Springer International Publishing
|
/
〈 | 〉 |