Catalytic reduction of water pollutants: knowledge gaps, lessons learned, and new opportunities

Jinyong Liu , Jinyu Gao

Front. Environ. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (2) : 26

PDF (4801KB)
Front. Environ. Sci. Eng. ›› 2023, Vol. 17 ›› Issue (2) : 26 DOI: 10.1007/s11783-023-1626-z
REVIEW ARTICLE
REVIEW ARTICLE

Catalytic reduction of water pollutants: knowledge gaps, lessons learned, and new opportunities

Author information +
History +
PDF (4801KB)

Abstract

● Advances, challenges, and opportunities for catalytic water pollutant reduction.

● Cases of Pd-based catalysts for nitrate, chlorate, and perchlorate reduction.

● New functionalities developed by screening and design of catalytic metal sites.

● Facile catalyst preparation approaches for convenient catalyst optimization.

● Rational design and non-decorative effort are essential for future work.

In this paper, we discuss the previous advances, current challenges, and future opportunities for the research of catalytic reduction of water pollutants. We present five case studies on the development of palladium-based catalysts for nitrate, chlorate, and perchlorate reduction with hydrogen gas under ambient conditions. We emphasize the realization of new functionalities through the screening and design of catalytic metal sites, including (i) platinum group metal (PGM) nanoparticles, (ii) the secondary metals for improving the reaction rate and product selectivity of nitrate reduction, (iii) oxygen-atom-transfer metal oxides for chlorate and perchlorate reduction, and (iv) ligand-enhanced coordination complexes for substantial activity enhancement. We also highlight the facile catalyst preparation approach that brought significant convenience to catalyst optimization. Based on our own studies, we then discuss directions of the catalyst research effort that are not immediately necessary or desirable, including (1) systematic study on the downstream aspects of under-developed catalysts, (2) random integration with hot concepts without a clear rationale, and (3) excessive and decorative experiments. We further address some general concerns regarding using H2 and PGMs in the catalytic system. Finally, we recommend future catalyst development in both “fundamental” and “applied” aspects. The purpose of this perspective is to remove major misconceptions about reductive catalysis research and bring back significant innovations for both scientific advancements and engineering applications to benefit environmental protection.

Graphical abstract

Keywords

Molybdenum / Rhenium / Rhodium / Ruthenium / Catalyst Support / Bromate

Cite this article

Download citation ▾
Jinyong Liu, Jinyu Gao. Catalytic reduction of water pollutants: knowledge gaps, lessons learned, and new opportunities. Front. Environ. Sci. Eng., 2023, 17(2): 26 DOI:10.1007/s11783-023-1626-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abu-Omar M M, Espenson J H. (1995). Facile abstraction of successive oxygen atoms from perchlorate ions by methylrhenium dioxide. Inorganic Chemistry, 34(25): 6239–6240

[2]

Abu-Omar M M, McPherson L D, Arias J, Béreau V M. (2000). Clean and efficient catalytic reduction of perchlorate. Angewandte Chemie International Edition in English, 39(23): 4310–4313

[3]

Barder T E, Buchwald S L. (2007a). Insights into amine binding to biaryl phosphine palladium oxidative addition complexes and reductive elimination from biaryl phosphine arylpalladium amido complexes via density functional theory. Journal of the American Chemical Society, 129(39): 12003–12010

[4]

Barder T E, Buchwald S L. (2007b). Rationale behind the resistance of dialkylbiaryl phosphines toward oxidation by molecular oxygen. Journal of the American Chemical Society, 129(16): 5096–5101

[5]

Baumgartner R, McNeill K. (2012). Hydrodefluorination and hydrogenation of fluorobenzene under mild aqueous conditions. Environmental Science & Technology, 46(18): 10199–10205

[6]

Baumgartner R, Stieger G K, McNeill K. (2013). Complete hydrodehalogenation of polyfluorinated and other polyhalogenated benzenes under mild catalytic conditions. Environmental Science & Technology, 47(12): 6545–6553

[7]

BeckerAKoch VSellMSchindlerHNeuenfeldt G (1998). Method of removing chlorate and bromate compounds from water by catalytic reduction. European Patent EP0779880B1

[8]

Cerrillo J L, Lopes C W, Rey F, Palomares A E. (2021). The Influence of the support nature and the metal precursor in the activity of Pd-based catalysts for the bromate reduction reaction. ChemCatChem, 13(4): 1230–1238

[9]

Chaplin B P, Reinhard M, Schneider W F, Schüth C, Shapley J R, Strathmann T J, Werth C J. (2012). Critical review of Pd-based catalytic treatment of priority contaminants in water. Environmental Science & Technology, 46(7): 3655–3670

[10]

Chen C, Li K, Li C, Sun T, Jia J. (2019). Combination of Pd–Cu catalysis and electrolytic H2 evolution for selective nitrate reduction using protonated polypyrrole as a cathode. Environmental Science & Technology, 53(23): 13868–13877

[11]

Chen F Y, Wu Z Y, Gupta S, Rivera D J, Lambeets S V, Pecaut S, Kim J Y T, Zhu P, Finfrock Y Z, Meira D M. . (2022). Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nature Nanotechnology, 17(7): 759–767

[12]

Chen G F, Yuan Y, Jiang H, Ren S Y, Ding L X, Ma L, Wu T, Lu J, Wang H. (2020). Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nature Energy, 5(8): 605–613

[13]

Chen H, Xu Z, Wan H, Zheng J, Yin D, Zheng S. (2010). Aqueous bromate reduction by catalytic hydrogenation over Pd/Al2O3 catalysts. Applied Catalysis B: Environmental, 96(3–4): 307–313

[14]

Chen X, Huo X, Liu J, Wang Y, Werth C J, Strathmann T J. (2017). Exploring beyond palladium: catalytic reduction of aqueous oxyanion pollutants with alternative platinum group metals and new mechanistic implications. Chemical Engineering Journal, 313: 745–752

[15]

Choe J K, Boyanov M I, Liu J, Kemner K M, Werth C J, Strathmann T J. (2014). X-ray spectroscopic characterization of immobilized rhenium species in hydrated rhenium–palladium bimetallic catalysts used for perchlorate water treatment. Journal of Physical Chemistry C, 118(22): 11666–11676

[16]

Choe J K, Shapley J R, Strathmann T J, Werth C J. (2010). Influence of rhenium speciation on the stability and activity of Re/Pd bimetal catalysts used for perchlorate reduction. Environmental Science & Technology, 44(12): 4716–4721

[17]

Chu C, Huang D, Gupta S, Weon S, Niu J, Stavitski E, Muhich C, Kim J H. (2021). Neighboring Pd single atoms surpass isolated single atoms for selective hydrodehalogenation catalysis. Nature Communications, 12(1): 5179

[18]

Chung J, Nerenberg R, Rittmann B E. (2007). Evaluation for biological reduction of nitrate and perchlorate in brine water using the hydrogen-based membrane biofilm reactor. Journal of Environmental Engineering, 133(2): 157–164

[19]

Clem R G, Huffman E. (1968). Amperometric titration of palladium(II) by oxidation with hypochlorite. Analytical Chemistry, 40(6): 945–948

[20]

Crowell W R, Yost D M, Roberts J D. (1940). The catalytic effect of osmium compounds on the reduction of perchloric acid by hydrobromic acid. Journal of the American Chemical Society, 62(8): 2176–2178

[21]

Durkin D P, Ye T, Choi J, Livi K J, Long H C D, Trulove P C, Fairbrother D H, Haverhals L M, Shuai D. (2018). Sustainable and scalable natural fiber welded palladium-indium catalysts for nitrate reduction. Applied Catalysis B: Environmental, 221: 290–301

[22]

Fontana D, Pietrantonio M, Pucciarmati S, Torelli G N, Bonomi C, Masi F. (2018). Palladium recovery from monolithic ceramic capacitors by leaching, solvent extraction and reduction. Journal of Material Cycles and Waste Management, 20(2): 1199–1206

[23]

Fotouhi-Far F, Bashiri H, Hamadanian M, Keshavarz M H. (2021). A new approach for the leaching of palladium from spent Pd/C catalyst in HCl–H2O2 system. Protection of Metals and Physical Chemistry of Surfaces, 57(2): 297–305

[24]

Gao J, Ren C, Huo X, Ji R, Wen X, Guo J, Liu J. (2021). Supported palladium catalysts: a facile preparation method and implications to reductive catalysis technology for water treatment. ACS ES&T Engineering, 1(3): 562–570

[25]

Grittini C, Malcomson M, Fernando Q, Korte N. (1995). Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Environmental Science & Technology, 29(11): 2898–2900

[26]

Gu B, Brown G M, Chiang C C. (2007). Treatment of perchlorate-contaminated groundwater using highly selective, regenerable ion-exchange technologies. Environmental Science & Technology, 41(17): 6277–6282

[27]

Guo S, Heck K, Kasiraju S, Qian H, Zhao Z, Grabow L C, Miller J T, Wong M S. (2018). Insights into nitrate reduction over indium-decorated palladium nanoparticle catalysts. ACS Catalysis, 8(1): 503–515

[28]

Guo S, Li H, Heck K N, Luan X, Guo W, Henkelman G, Wong M S. (2022). Gold boosts nitrate reduction and deactivation resistance to indium-promoted palladium catalysts. Applied Catalysis B: Environmental, 305: 121048

[29]

Haight G Jr. (1954). Mechanism of the tungstate catalyzed reduction of perchlorate by stannous chloride. Journal of the American Chemical Society, 76(18): 4718–4721

[30]

Haight G Jr, Sager W. (1952). Evidence for preferential one-step divalent changes in the molybdate-catalyzed reduction of perchlorate by stannous ion in sulfuric acid solution. Journal of the American Chemical Society, 74(23): 6056–6059

[31]

Hamid S, Bae S, Lee W. (2018). Novel bimetallic catalyst supported by red mud for enhanced nitrate reduction. Chemical Engineering Journal, 348: 877–887

[32]

He W, Zhang J, Dieckhöfer S, Varhade S, Brix A C, Lielpetere A, Seisel S, Junqueira J R C, Schuhmann W. (2022). Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia. Nature Communications, 13(1): 1129

[33]

Heck K N, Garcia-Segura S, Westerhoff P, Wong M S. (2019). Catalytic converters for water treatment. Accounts of Chemical Research, 52(4): 906–915

[34]

Holm R H. (1987). Metal-centered oxygen atom transfer reactions. Chemical Reviews, 87(6): 1401–1449

[35]

Hörold S, Vorlop K D, Tacke T, Sell M. (1993). Development of catalysts for a selective nitrate and nitrite removal from drinking water. Catalysis Today, 17(1–2): 21–30

[36]

Howe J L, Mercer F N. (1925). Contributions to the study of ruthenium IX. Solubility of ruthenium in hypochlorite solutions and an attempt to utilize the reaction for the quantitative determination of the metal. Journal of the American Chemical Society, 47(12): 2926–2932

[37]

Huo X, Van Hoomissen D J, Liu J, Vyas S, Strathmann T J. (2017). Hydrogenation of aqueous nitrate and nitrite with ruthenium catalysts. Applied Catalysis B: Environmental, 211: 188–198

[38]

Hurley K D, Shapley J R. (2007). Efficient heterogeneous catalytic reduction of perchlorate in water. Environmental Science & Technology, 41(6): 2044–2049

[39]

Hurley K D, Zhang Y, Shapley J R. (2009). Ligand-enhanced reduction of perchlorate in water with heterogeneous Re-Pd/C catalysts. Journal of the American Chemical Society, 131(40): 14172–14173

[40]

Kolthoff I. (1921). Jodometrische studien. Fresenius’ Zeitschrift für Analytische Chemie, 60(12): 448–457

[41]

KongXXiao JChenAChenLLiC FengLRen XFanXSunWSunZ (2022). Enhanced catalytic denitrification performance of ruthenium-based catalysts by hydrogen spillover from a palladium promoter. Journal of Colloid and Interface Science, 608(Pt 3): 2973–2984

[42]

Kuznetsova L I, Kuznetsova N I, Koscheev S V, Zaikovskii V I, Lisitsyn A S, Kaprielova K M, Kirillova N V, Twardowski Z. (2012). Carbon-supported iridium catalyst for reduction of chlorate ions with hydrogen in concentrated solutions of sodium chloride. Applied Catalysis A, General, 427–428: 8–15

[43]

Lai C Y, Wu M, Lu X, Wang Y, Yuan Z, Guo J. (2021). Microbial perchlorate reduction driven by ethane and propane. Environmental Science & Technology, 55(3): 2006–2015

[44]

Li J, Li M, An N, Zhang S, Song Q, Yang Y, Li J, Liu X. (2022). Boosted ammonium production by single cobalt atom catalysts with high Faradic efficiencies. Proceedings of the National Academy of Sciences of the United States of America, 119(29): e2123450119

[45]

Li J, Zhan G, Yang J, Quan F, Mao C, Liu Y, Wang B, Lei F, Li L, Chan A W M, Xu L, Shi Y, Du Y, Hao W, Wong P K, Wang J, Dou S X, Zhang L, Yu J C. (2020). Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters. Journal of the American Chemical Society, 142(15): 7036–7046

[46]

Lim J, Liu C Y, Park J, Liu Y H, Senftle T P, Lee S W, Hatzell M C. (2021). Structure sensitivity of Pd facets for enhanced electrochemical nitrate reduction to ammonia. ACS Catalysis, 11(12): 7568–7577

[47]

Liu J, Chen X, Wang Y, Strathmann T J, Werth C J. (2015a). Mechanism and mitigation of the decomposition of an oxorhenium complex-based heterogeneous catalyst for perchlorate reduction in water. Environmental Science & Technology, 49(21): 12932–12940

[48]

Liu J, Choe J K, Sasnow Z, Werth C J, Strathmann T J. (2013). Application of a Re-Pd bimetallic catalyst for treatment of perchlorate in waste ion-exchange regenerant brine. Water Research, 47(1): 91–101

[49]

Liu J, Choe J K, Wang Y, Shapley J R, Werth C J, Strathmann T J. (2015b). Bioinspired complex-nanoparticle hybrid catalyst system for aqueous perchlorate reduction: Rhenium speciation and its influence on catalyst activity. ACS Catalysis, 5(2): 511–522

[50]

Liu J, Han M, Wu D, Chen X, Choe J K, Werth C J, Strathmann T J. (2016a). A new bioinspired perchlorate reduction catalyst with significantly enhanced stability via rational tuning of rhenium coordination chemistry and heterogeneous reaction pathway. Environmental Science & Technology, 50(11): 5874–5881

[51]

Liu J, Su X, Han M, Wu D, Gray D L, Shapley J R, Werth C J, Strathmann T J. (2017). Ligand design for isomer-selective oxorhenium(V) complex synthesis. Inorganic Chemistry, 56(3): 1757–1769

[52]

Liu J, Wu D, Su X, Han M, Kimura S Y, Gray D L, Shapley J R, Abu-Omar M M, Werth C J, Strathmann T J. (2016b). Configuration control in the synthesis of homo-and heteroleptic bis (oxazolinylphenolato/thiazolinylphenolato) chelate ligand complexes of oxorhenium(V): isomer effect on ancillary ligand exchange dynamics and implications for perchlorate reduction catalysis. Inorganic Chemistry, 55(5): 2597–2611

[53]

Lowry G V, Reinhard M. (2000). Pd-catalyzed TCE dechlorination in groundwater: solute effects, biological control, and oxidative catalyst regeneration. Environmental Science & Technology, 34(15): 3217–3223

[54]

Lowry G V, Reinhard M. (2001). Pd-catalyzed TCE dechlorination in water: effect of [H2](aq) and H2-utilizing competitive solutes on the TCE dechlorination rate and product distribution. Environmental Science & Technology, 35(4): 696–702

[55]

Mazin I. (2022). Inverse Occam’s razor. Nature Physics, 18(4): 367–368

[56]

Nature Nanotechnology Editorial Board. (2022). Bringing out the Occam’s razor in peer-review. Nature Nanotechnology, 17(6): 561

[57]

Nogueira C A, Paiva A P, Costa M C, Rosa da Costa A M. (2020). Leaching efficiency and kinetics of the recovery of palladium and rhodium from a spent auto-catalyst in HCl/CuCl2 media. Environmental Technology, 41(18): 2293–2304

[58]

Park J, An S, Jho E H, Bae S, Choi Y, Choe J K. (2020). Exploring reductive degradation of fluorinated pharmaceuticals using Al2O3-supported Pt-group metallic catalysts: catalytic reactivity, reaction pathways, and toxicity assessment. Water Research, 185: 116242

[59]

Park J, Hwang Y, Bae S. (2019). Nitrate reduction on surface of Pd/Sn catalysts supported by coal fly ash-derived zeolites. Journal of Hazardous Materials, 374: 309–318

[60]

Prüsse U, Hähnlein M, Daum J, Vorlop K D. (2000). Improving the catalytic nitrate reduction. Catalysis Today, 55(1–2): 79–90

[61]

Prüsse U, Hörold S, Vorlop K D. (1997). Einfluß der präparationsbedingungen auf die eigenschaften von bimetallkatalysatoren zur nitratentfernung aus wasser. Chemieingenieurtechnik (Weinheim), 69(1–2): 93–97

[62]

PrüsseUVorlopK D (2001). Supported bimetallic palladium catalysts for water-phase nitrate reduction. Journal of Molecular Catalysis A Chemical, 173(1−2): 313−328

[63]

Ren C, Bi E Y, Gao J, Liu J. (2022). Molybdenum-catalyzed perchlorate reduction: robustness, challenges, and solutions. ACS ES&T Engineering, 2(2): 181–188

[64]

Ren C, Liu J. (2021). Bioinspired catalytic reduction of aqueous perchlorate by one single-metal site with high stability against oxidative deactivation. ACS Catalysis, 11(11): 6715–6725

[65]

Ren C, Yang P, Gao J, Huo X, Min X, Bi E Y, Liu Y, Wang Y, Zhu M, Liu J. (2020). Catalytic reduction of aqueous chlorate with MoOx immobilized on Pd/C. ACS Catalysis, 10(15): 8201–8211

[66]

Ren C, Yang P, Sun J, Bi E Y, Gao J, Palmer J, Zhu M, Wu Y, Liu J. (2021a). A bioinspired molybdenum catalyst for aqueous perchlorate reduction. Journal of the American Chemical Society, 143(21): 7891–7896

[67]

Ren Z, Bergmann U, Leiviskä T. (2021b). Reductive degradation of perfluorooctanoic acid in complex water matrices by using the UV/sulfite process. Water Research, 205: 117676

[68]

Schaefer C E, Andaya C, Urtiaga A, McKenzie E R, Higgins C P. (2015). Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs). Journal of Hazardous Materials, 295: 170–175

[69]

Scott S L. (2018). A matter of life (time) and death. ACS Catalysis, 8(9): 8597–8599

[70]

Shekhar S, Ryberg P, Hartwig J F, Mathew J S, Blackmond D G, Strieter E R, Buchwald S L. (2006). Reevaluation of the mechanism of the amination of aryl halides catalyzed by BINAP-ligated palladium complexes. Journal of the American Chemical Society, 128(11): 3584–3591

[71]

Singh U K, Strieter E R, Blackmond D G, Buchwald S L. (2002). Mechanistic insights into the Pd(BINAP)-catalyzed amination of aryl bromides: kinetic studies under synthetically relevant conditions. Journal of the American Chemical Society, 124(47): 14104–14114

[72]

Standardization Administration of China (2022). National Standard of the People’s Republic of China: GB 5749−2022 Standards for Drinking Water Quality

[73]

Strieter E R, Buchwald S L. (2006). Evidence for the formation and structure of palladacycles during Pd-catalyzed C-N bond formation with catalysts derived from bulky monophosphinobiaryl ligands. Angewandte Chemie International Edition, 45(6): 925–928

[74]

Su J F, Kuan W F, Chen C L, Huang C P. (2020). Enhancing electrochemical nitrate reduction toward dinitrogen selectivity on Sn-Pd bimetallic electrodes by surface structure design. Applied Catalysis A, General, 606: 117809

[75]

Tacke T, Vorlop K D. (1993). Kinetische charakterisierung von katalysatoren zur selektiven entfernung von nitrat und nitrit aus wasser. Chemieingenieurtechnik (Weinheim), 65(12): 1500–1502

[76]

Van SantenRKlesing ANeuenfeldtGOttmannA (2001). Method for removing chlorate ions from solutions. U.S. Patent US6270682B1

[77]

Vorlop K D, Hörold S, Pohlandt K. (1992). Optimierung von trägerkatalysatoren zur selektiven nitritentfernung aus wasser. Chemieingenieurtechnik (Weinheim), 64(1): 82–83

[78]

Vorlop K D, Tacke T. (1989). Erste schritte auf dem weg zur edelmetallkatalysierten nitrat-und nitrit-entfernung aus trinkwasser. Chemieingenieurtechnik (Weinheim), 61(10): 836–837

[79]

Wang Y, Liu J, Wang P, Werth C J, Strathmann T J. (2014). Palladium nanoparticles encapsulated in core–shell silica: a structured hydrogenation catalyst with enhanced activity for reduction of oxyanion water pollutants. ACS Catalysis, 4(10): 3551–3559

[80]

Wang Y, Xu A, Wang Z, Huang L, Li J, Li F, Wicks J, Luo M, Nam D H, Tan C S, Ding Y, Wu J, Lum Y, Dinh C T, Sinton D, Zheng G, Sargent E H. (2020). Enhanced nitrate-to-ammonia activity on copper–nickel alloys via tuning of intermediate adsorption. Journal of the American Chemical Society, 142(12): 5702–5708

[81]

Webb J D, Macquarrie S, Mceleney K, Crudden C M. (2007). Mesoporous silica-supported Pd catalysts: An investigation into structure, activity, leaching and heterogeneity. Journal of Catalysis, 252(1): 97–109

[82]

Werth C J, Yan C, Troutman J P. (2020). Factors impeding replacement of ion exchange with (electro) catalytic treatment for nitrate removal from drinking water. ACS ES&T Engineering, 1(1): 6–20

[83]

Wu Y, Cai S, Wang D, He W, Li Y. (2012). Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions. Journal of the American Chemical Society, 134(21): 8975–8981

[84]

Wu Z Y, Karamad M, Yong X, Huang Q, Cullen D A, Zhu P, Xia C, Xiao Q, Shakouri M, Chen F Y, Kim J Y T, Xia Y, Heck K, Hu Y, Wong M S, Li Q, Gates I, Siahrostami S, Wang H. (2021). Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nature Communications, 12(1): 2870

[85]

Ye T, Banek N A, Durkin D P, Hu M, Wang X, Wagner M J, Shuai D. (2018). Pd nanoparticle catalysts supported on nitrogen-functionalized activated carbon for oxyanion hydrogenation and water purification. ACS Applied Nano Materials, 1(12): 6580–6586

[86]

Ye X, Nan J, Ge Z, Xiao Q, Liu B, Men Y, Liu J. (2022). Simultaneous removal of iron, manganese, and ammonia enhanced by preloaded MnO2 on low-pressure ultrafiltration membrane. Journal of Membrane Science, 656: 120641

[87]

Yin Y B, Guo S, Heck K N, Clark C A, Conrad C L, Wong M S. (2018). Treating water by degrading oxyanions using metallic nanostructures. ACS Sustainable Chemistry & Engineering, 6(9): 11160–11175

[88]

Yu Y H, Chiu P C. (2014). Kinetics and pathway of vinyl fluoride reduction over rhodium. Environmental Science & Technology Letters, 1(11): 448–452

[89]

Yuan A, Zhao H, Shan W, Sun J-F, Deng J, Liu H, Liu R, Liu J-F. (2021). The binding strength of reactive H*: a neglected key factor in Rh-catalyzed environmental hydrodefluorination reaction. ACS ES&T Engineering, 1(6): 1036–1045

[90]

Zhang Y, Hurley K D, Shapley J R. (2011). Heterogeneous catalytic reduction of perchlorate in water with Re-Pd/C catalysts derived from an oxorhenium(V) molecular precursor. Inorganic Chemistry, 50(4): 1534–1543

[91]

Zhang Z, Xu Y, Shi W, Wang W, Zhang R, Bao X, Zhang B, Li L, Cui F. (2016). Electrochemical-catalytic reduction of nitrate over Pd–Cu/γAl2O3 catalyst in cathode chamber: enhanced removal efficiency and N2 selectivity. Chemical Engineering Journal, 290: 201–208

[92]

Zhao H P, Van Ginkel S, Tang Y, Kang D W, Rittmann B, Krajmalnik-Brown R. (2011). Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor. Environmental Science & Technology, 45(23): 10155–10162

[93]

Zhuang Y, Ahn S, Seyfferth A L, Masue-Slowey Y, Fendorf S, Luthy R G. (2011). Dehalogenation of polybrominated diphenyl ethers and polychlorinated biphenyl by bimetallic, impregnated, and nanoscale zerovalent iron. Environmental Science & Technology, 45(11): 4896–4903

RIGHTS & PERMISSIONS

The Author(s) 2023. This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (4801KB)

3333

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/