RESEARCH ARTICLE

Efficient synthesis of titania nanotubes and enhanced photoresponse of Pt decorated TiO2 for water splitting

  • Yuxin YIN 1 ,
  • Xin TAN , 1 ,
  • Feng HOU 2 ,
  • Lin ZHAO 1
Expand
  • 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • 2. School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China

Received date: 19 Dec 2008

Accepted date: 28 Apr 2009

Published date: 05 Sep 2009

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We investigated the effect of HMT (hexamethylenetetraamine) on the anodic growth of TiO2 nanotube arrays. The tube length increases to 4.3 μm with HMT concentration increasing to 0.04 mol·L-1. Adsorption of HMT on the TiO2 surface is shown to markedly decrease the chemical dissolution rate of tube mouth, resulting in longer nanotube length. Furthermore, Pt nanoparticles were successfully deposited on the surface of TiO2 nanotubes by ac electrodeposition method. The TiO2/Pt composites were characterized by field emission scanning electron microscope (FESEM), X-ray photoelectron spectra (XPS), and photoelectrochemistry. An enhancement in photocurrent density has been achieved upon modification of TiO2 nanotubes with Pt nanoparticles.

Cite this article

Yuxin YIN , Xin TAN , Feng HOU , Lin ZHAO . Efficient synthesis of titania nanotubes and enhanced photoresponse of Pt decorated TiO2 for water splitting[J]. Frontiers of Chemical Science and Engineering, 2009 , 3(3) : 298 -304 . DOI: 10.1007/s11705-009-0019-6

Acknowledgements

Funding for this work is from the National Natural Science Foundation of China (Grant No. 20776103) and the China Postdoctoral Science Foundation (No. 20080440678).
1
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37-38

DOI

2
Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Enhanced photocleavage of water using titania nanotube arrays. Nano Lett, 2005, 5: 191-195

DOI

3
Varghese O K, Paulose M, Shankar K, Mor G K, Grimes C A. Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J Nanosci Nanotechnol, 2005, 5: 1158-1165

DOI

4
Beranek R, Tsuchiya H, Sugishima T, Macak J M, Taveira L, Fujimoto S, Kisch H, Schmuki P. Enhancement and limits of the photoelec trochemical response from anodic TiO2 nanotubes. Appl Phys Lett, 2005, 87: 243114—243116

DOI

5
Law M, Greene L E, Johnson J C, Saykally R, Yang P D. Nanowire dye-sensitized solar cells. Nat Mater, 2005, 4: 455-459

DOI

6
Frank A J, Kopidakis N, van de Lagemaat J. Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties. Coord Chem Rev, 2004, 248: 1165-1179

DOI

7
Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett, 2006, 6: 215-218

DOI

8
Guo Y, Hu J, Liang H, Wan L, Bai C. TiO2-based composite nanotube arrays prepared via layer-by-layer assembly. Adv Funct Mater, 2005, 15: 196-202

DOI

9
Wu D, Chen Y, Liu J, Zhao X, Li A, Ming N. Co-doped titanate nanotubes. Appl Phys Lett, 2005, 87: 112501—112503

DOI

10
Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin M Y, Aucouturier M. Structure and physicochemistry of anodic oxide films on titanium and TA6V Alloy. Surf Interface Anal, 1999, 27: 629-637

DOI

11
Yin Y X, Jin Z G, Hou F. Fabrication and properties of TiO2 nanotube arrays using glycerol-DMSO-H2O electrolyte. Acta Phys-Chim Sin, 2007, 23: 1797-1802

12
Shin H J, Jeong D K, Lee J G, Sung M M, Kim J Y. Formation of TiO2 and ZrO2 nanotubes using atomic layer deposition with ultraprecise control of the wall thickness. Adv Mater, 2004, 16: 1197-1200

DOI

13
Yang H G, Zeng H C. Control of nucleation in solution growth of anatase TiO2 on glass substrate. J Phys Chem B, 2003, 107: 12244-12255

DOI

14
Pradhan S K, Reucroft P J, Yang F Q, Dozier A. Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J Cryst Growth, 2003, 256: 83-88

DOI

15
Sander M S, Cote M J, Gu W, Kile B M, Tripp C P. Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates. Adv Mater, 2004, 16: 2052-2057

16
Miyauchi M, Tokudome H, Toda Y, Kamiya T, Hosono H. Electron field emission from TiO2 nanotube arrays synthesized by hydrothermal reaction. Appl Phys Lett, 2006, 89: 043114-043116

DOI

17
Macak J M, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P. Smooth anodic TiO2 nanotubes. Angew Chem Int Ed, 2005, 44: 7463-7465

DOI

18
Ghicov A, Tsuchiya H, Macak J M, Schmuki P. Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem Commun, 2005, 7: 505-509

DOI

19
Ruan C M, Paulose M, Varghese O K, Mor G K, Grimes C A. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. J Phys Chem B, 2005, 109: 15754-15759

DOI

20
Yin Y X, Jin Z G, Hou F, Wang X. Synthesis and morphology of TiO2 nanotube arrays by anodic oxidation using modified glycerol-based electrolytes. J Am Ceram Soc, 2007, 90: 2384-2389

DOI

21
Heller A. Optically transparent metallic catalysts on Semiconductors. Pure Appl Chem, 1986, 58: 1189-1192

DOI

22
Domen K, Sakata Y, Kudo A, Maruya K, Onishi T. The photocatalytic activity of a platinized titanium dioxide catalyst supported over silica. Bull Chem Soc Jpn, 1988, 61: 359-362

DOI

23
Nosaka Y, Norimatsu K, Miyama H. The function of metals in metal-compounded semiconductor photocatalysts. Chem Phys Lett, 1984, 106: 128-131

DOI

24
Chandrasekharan N, Kamat P V. Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J Phys Chem B, 2000, 104: 10851-10857

DOI

25
Silva W E, Alves S, De Farias R F. Synthesis, characterization and thermogravimetric study of Eu(III), Tm (III), Fe(III), Cr(II), Ni(II), Co(II), Cu(II), Pb(II) and Hg(II) coordination compounds with hexamethylenetetramine. J Coord Chem, 2004, 57: 967-971

DOI

26
Liu Z L, Lee J Y, Chen W X, Han M, Gan L M. Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles. Langmuir, 2004, 20: 181-187

DOI

Outlines

/