Frontiers of Chemical Science and Engineering >
Efficient synthesis of titania nanotubes and enhanced photoresponse of Pt decorated TiO2 for water splitting
Received date: 19 Dec 2008
Accepted date: 28 Apr 2009
Published date: 05 Sep 2009
Copyright
We investigated the effect of HMT (hexamethylenetetraamine) on the anodic growth of TiO2 nanotube arrays. The tube length increases to 4.3 μm with HMT concentration increasing to 0.04 mol·L-1. Adsorption of HMT on the TiO2 surface is shown to markedly decrease the chemical dissolution rate of tube mouth, resulting in longer nanotube length. Furthermore, Pt nanoparticles were successfully deposited on the surface of TiO2 nanotubes by ac electrodeposition method. The TiO2/Pt composites were characterized by field emission scanning electron microscope (FESEM), X-ray photoelectron spectra (XPS), and photoelectrochemistry. An enhancement in photocurrent density has been achieved upon modification of TiO2 nanotubes with Pt nanoparticles.
Key words: TiO2 nanotube arrays; HMT; TiO2/Pt; Photocurrent density
Yuxin YIN , Xin TAN , Feng HOU , Lin ZHAO . Efficient synthesis of titania nanotubes and enhanced photoresponse of Pt decorated TiO2 for water splitting[J]. Frontiers of Chemical Science and Engineering, 2009 , 3(3) : 298 -304 . DOI: 10.1007/s11705-009-0019-6
1 |
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37-38
|
2 |
Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Enhanced photocleavage of water using titania nanotube arrays. Nano Lett, 2005, 5: 191-195
|
3 |
Varghese O K, Paulose M, Shankar K, Mor G K, Grimes C A. Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J Nanosci Nanotechnol, 2005, 5: 1158-1165
|
4 |
Beranek R, Tsuchiya H, Sugishima T, Macak J M, Taveira L, Fujimoto S, Kisch H, Schmuki P. Enhancement and limits of the photoelec trochemical response from anodic TiO2 nanotubes. Appl Phys Lett, 2005, 87: 243114—243116
|
5 |
Law M, Greene L E, Johnson J C, Saykally R, Yang P D. Nanowire dye-sensitized solar cells. Nat Mater, 2005, 4: 455-459
|
6 |
Frank A J, Kopidakis N, van de Lagemaat J. Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties. Coord Chem Rev, 2004, 248: 1165-1179
|
7 |
Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett, 2006, 6: 215-218
|
8 |
Guo Y, Hu J, Liang H, Wan L, Bai C. TiO2-based composite nanotube arrays prepared via layer-by-layer assembly. Adv Funct Mater, 2005, 15: 196-202
|
9 |
Wu D, Chen Y, Liu J, Zhao X, Li A, Ming N. Co-doped titanate nanotubes. Appl Phys Lett, 2005, 87: 112501—112503
|
10 |
Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin M Y, Aucouturier M. Structure and physicochemistry of anodic oxide films on titanium and TA6V Alloy. Surf Interface Anal, 1999, 27: 629-637
|
11 |
Yin Y X, Jin Z G, Hou F. Fabrication and properties of TiO2 nanotube arrays using glycerol-DMSO-H2O electrolyte. Acta Phys-Chim Sin, 2007, 23: 1797-1802
|
12 |
Shin H J, Jeong D K, Lee J G, Sung M M, Kim J Y. Formation of TiO2 and ZrO2 nanotubes using atomic layer deposition with ultraprecise control of the wall thickness. Adv Mater, 2004, 16: 1197-1200
|
13 |
Yang H G, Zeng H C. Control of nucleation in solution growth of anatase TiO2 on glass substrate. J Phys Chem B, 2003, 107: 12244-12255
|
14 |
Pradhan S K, Reucroft P J, Yang F Q, Dozier A. Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J Cryst Growth, 2003, 256: 83-88
|
15 |
Sander M S, Cote M J, Gu W, Kile B M, Tripp C P. Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates. Adv Mater, 2004, 16: 2052-2057
|
16 |
Miyauchi M, Tokudome H, Toda Y, Kamiya T, Hosono H. Electron field emission from TiO2 nanotube arrays synthesized by hydrothermal reaction. Appl Phys Lett, 2006, 89: 043114-043116
|
17 |
Macak J M, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P. Smooth anodic TiO2 nanotubes. Angew Chem Int Ed, 2005, 44: 7463-7465
|
18 |
Ghicov A, Tsuchiya H, Macak J M, Schmuki P. Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem Commun, 2005, 7: 505-509
|
19 |
Ruan C M, Paulose M, Varghese O K, Mor G K, Grimes C A. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. J Phys Chem B, 2005, 109: 15754-15759
|
20 |
Yin Y X, Jin Z G, Hou F, Wang X. Synthesis and morphology of TiO2 nanotube arrays by anodic oxidation using modified glycerol-based electrolytes. J Am Ceram Soc, 2007, 90: 2384-2389
|
21 |
Heller A. Optically transparent metallic catalysts on Semiconductors. Pure Appl Chem, 1986, 58: 1189-1192
|
22 |
Domen K, Sakata Y, Kudo A, Maruya K, Onishi T. The photocatalytic activity of a platinized titanium dioxide catalyst supported over silica. Bull Chem Soc Jpn, 1988, 61: 359-362
|
23 |
Nosaka Y, Norimatsu K, Miyama H. The function of metals in metal-compounded semiconductor photocatalysts. Chem Phys Lett, 1984, 106: 128-131
|
24 |
Chandrasekharan N, Kamat P V. Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J Phys Chem B, 2000, 104: 10851-10857
|
25 |
Silva W E, Alves S, De Farias R F. Synthesis, characterization and thermogravimetric study of Eu(III), Tm (III), Fe(III), Cr(II), Ni(II), Co(II), Cu(II), Pb(II) and Hg(II) coordination compounds with hexamethylenetetramine. J Coord Chem, 2004, 57: 967-971
|
26 |
Liu Z L, Lee J Y, Chen W X, Han M, Gan L M. Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles. Langmuir, 2004, 20: 181-187
|
/
〈 | 〉 |