Efficient synthesis of titania nanotubes and enhanced photoresponse of Pt decorated TiO2 for water splitting

Yuxin YIN, Xin TAN, Feng HOU, Lin ZHAO

PDF(406 KB)
PDF(406 KB)
Front. Chem. Sci. Eng. ›› 2009, Vol. 3 ›› Issue (3) : 298-304. DOI: 10.1007/s11705-009-0019-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Efficient synthesis of titania nanotubes and enhanced photoresponse of Pt decorated TiO2 for water splitting

Author information +
History +

Abstract

We investigated the effect of HMT (hexamethylenetetraamine) on the anodic growth of TiO2 nanotube arrays. The tube length increases to 4.3 μm with HMT concentration increasing to 0.04 mol·L-1. Adsorption of HMT on the TiO2 surface is shown to markedly decrease the chemical dissolution rate of tube mouth, resulting in longer nanotube length. Furthermore, Pt nanoparticles were successfully deposited on the surface of TiO2 nanotubes by ac electrodeposition method. The TiO2/Pt composites were characterized by field emission scanning electron microscope (FESEM), X-ray photoelectron spectra (XPS), and photoelectrochemistry. An enhancement in photocurrent density has been achieved upon modification of TiO2 nanotubes with Pt nanoparticles.

Keywords

TiO2 nanotube arrays / HMT / TiO2/Pt / Photocurrent density

Cite this article

Download citation ▾
Yuxin YIN, Xin TAN, Feng HOU, Lin ZHAO. Efficient synthesis of titania nanotubes and enhanced photoresponse of Pt decorated TiO2 for water splitting. Front Chem Eng Chin, 2009, 3(3): 298‒304 https://doi.org/10.1007/s11705-009-0019-6

References

[1]
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37-38
CrossRef Google scholar
[2]
Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Enhanced photocleavage of water using titania nanotube arrays. Nano Lett, 2005, 5: 191-195
CrossRef Google scholar
[3]
Varghese O K, Paulose M, Shankar K, Mor G K, Grimes C A. Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J Nanosci Nanotechnol, 2005, 5: 1158-1165
CrossRef Google scholar
[4]
Beranek R, Tsuchiya H, Sugishima T, Macak J M, Taveira L, Fujimoto S, Kisch H, Schmuki P. Enhancement and limits of the photoelec trochemical response from anodic TiO2 nanotubes. Appl Phys Lett, 2005, 87: 243114—243116
CrossRef Google scholar
[5]
Law M, Greene L E, Johnson J C, Saykally R, Yang P D. Nanowire dye-sensitized solar cells. Nat Mater, 2005, 4: 455-459
CrossRef Google scholar
[6]
Frank A J, Kopidakis N, van de Lagemaat J. Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties. Coord Chem Rev, 2004, 248: 1165-1179
CrossRef Google scholar
[7]
Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett, 2006, 6: 215-218
CrossRef Google scholar
[8]
Guo Y, Hu J, Liang H, Wan L, Bai C. TiO2-based composite nanotube arrays prepared via layer-by-layer assembly. Adv Funct Mater, 2005, 15: 196-202
CrossRef Google scholar
[9]
Wu D, Chen Y, Liu J, Zhao X, Li A, Ming N. Co-doped titanate nanotubes. Appl Phys Lett, 2005, 87: 112501—112503
CrossRef Google scholar
[10]
Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin M Y, Aucouturier M. Structure and physicochemistry of anodic oxide films on titanium and TA6V Alloy. Surf Interface Anal, 1999, 27: 629-637
CrossRef Google scholar
[11]
Yin Y X, Jin Z G, Hou F. Fabrication and properties of TiO2 nanotube arrays using glycerol-DMSO-H2O electrolyte. Acta Phys-Chim Sin, 2007, 23: 1797-1802
[12]
Shin H J, Jeong D K, Lee J G, Sung M M, Kim J Y. Formation of TiO2 and ZrO2 nanotubes using atomic layer deposition with ultraprecise control of the wall thickness. Adv Mater, 2004, 16: 1197-1200
CrossRef Google scholar
[13]
Yang H G, Zeng H C. Control of nucleation in solution growth of anatase TiO2 on glass substrate. J Phys Chem B, 2003, 107: 12244-12255
CrossRef Google scholar
[14]
Pradhan S K, Reucroft P J, Yang F Q, Dozier A. Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J Cryst Growth, 2003, 256: 83-88
CrossRef Google scholar
[15]
Sander M S, Cote M J, Gu W, Kile B M, Tripp C P. Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates. Adv Mater, 2004, 16: 2052-2057
[16]
Miyauchi M, Tokudome H, Toda Y, Kamiya T, Hosono H. Electron field emission from TiO2 nanotube arrays synthesized by hydrothermal reaction. Appl Phys Lett, 2006, 89: 043114-043116
CrossRef Google scholar
[17]
Macak J M, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P. Smooth anodic TiO2 nanotubes. Angew Chem Int Ed, 2005, 44: 7463-7465
CrossRef Google scholar
[18]
Ghicov A, Tsuchiya H, Macak J M, Schmuki P. Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem Commun, 2005, 7: 505-509
CrossRef Google scholar
[19]
Ruan C M, Paulose M, Varghese O K, Mor G K, Grimes C A. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. J Phys Chem B, 2005, 109: 15754-15759
CrossRef Google scholar
[20]
Yin Y X, Jin Z G, Hou F, Wang X. Synthesis and morphology of TiO2 nanotube arrays by anodic oxidation using modified glycerol-based electrolytes. J Am Ceram Soc, 2007, 90: 2384-2389
CrossRef Google scholar
[21]
Heller A. Optically transparent metallic catalysts on Semiconductors. Pure Appl Chem, 1986, 58: 1189-1192
CrossRef Google scholar
[22]
Domen K, Sakata Y, Kudo A, Maruya K, Onishi T. The photocatalytic activity of a platinized titanium dioxide catalyst supported over silica. Bull Chem Soc Jpn, 1988, 61: 359-362
CrossRef Google scholar
[23]
Nosaka Y, Norimatsu K, Miyama H. The function of metals in metal-compounded semiconductor photocatalysts. Chem Phys Lett, 1984, 106: 128-131
CrossRef Google scholar
[24]
Chandrasekharan N, Kamat P V. Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J Phys Chem B, 2000, 104: 10851-10857
CrossRef Google scholar
[25]
Silva W E, Alves S, De Farias R F. Synthesis, characterization and thermogravimetric study of Eu(III), Tm (III), Fe(III), Cr(II), Ni(II), Co(II), Cu(II), Pb(II) and Hg(II) coordination compounds with hexamethylenetetramine. J Coord Chem, 2004, 57: 967-971
CrossRef Google scholar
[26]
Liu Z L, Lee J Y, Chen W X, Han M, Gan L M. Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles. Langmuir, 2004, 20: 181-187
CrossRef Google scholar

Acknowledgements

Funding for this work is from the National Natural Science Foundation of China (Grant No. 20776103) and the China Postdoctoral Science Foundation (No. 20080440678).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(406 KB)

Accesses

Citations

Detail

Sections
Recommended

/