Efficient synthesis of titania nanotubes and enhanced photoresponse of Pt decorated TiO2 for water splitting
Yuxin YIN, Xin TAN, Feng HOU, Lin ZHAO
Efficient synthesis of titania nanotubes and enhanced photoresponse of Pt decorated TiO2 for water splitting
We investigated the effect of HMT (hexamethylenetetraamine) on the anodic growth of TiO2 nanotube arrays. The tube length increases to 4.3 μm with HMT concentration increasing to 0.04 mol·L-1. Adsorption of HMT on the TiO2 surface is shown to markedly decrease the chemical dissolution rate of tube mouth, resulting in longer nanotube length. Furthermore, Pt nanoparticles were successfully deposited on the surface of TiO2 nanotubes by ac electrodeposition method. The TiO2/Pt composites were characterized by field emission scanning electron microscope (FESEM), X-ray photoelectron spectra (XPS), and photoelectrochemistry. An enhancement in photocurrent density has been achieved upon modification of TiO2 nanotubes with Pt nanoparticles.
TiO2 nanotube arrays / HMT / TiO2/Pt / Photocurrent density
[1] |
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37-38
CrossRef
Google scholar
|
[2] |
Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Enhanced photocleavage of water using titania nanotube arrays. Nano Lett, 2005, 5: 191-195
CrossRef
Google scholar
|
[3] |
Varghese O K, Paulose M, Shankar K, Mor G K, Grimes C A. Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J Nanosci Nanotechnol, 2005, 5: 1158-1165
CrossRef
Google scholar
|
[4] |
Beranek R, Tsuchiya H, Sugishima T, Macak J M, Taveira L, Fujimoto S, Kisch H, Schmuki P. Enhancement and limits of the photoelec trochemical response from anodic TiO2 nanotubes. Appl Phys Lett, 2005, 87: 243114—243116
CrossRef
Google scholar
|
[5] |
Law M, Greene L E, Johnson J C, Saykally R, Yang P D. Nanowire dye-sensitized solar cells. Nat Mater, 2005, 4: 455-459
CrossRef
Google scholar
|
[6] |
Frank A J, Kopidakis N, van de Lagemaat J. Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties. Coord Chem Rev, 2004, 248: 1165-1179
CrossRef
Google scholar
|
[7] |
Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett, 2006, 6: 215-218
CrossRef
Google scholar
|
[8] |
Guo Y, Hu J, Liang H, Wan L, Bai C. TiO2-based composite nanotube arrays prepared via layer-by-layer assembly. Adv Funct Mater, 2005, 15: 196-202
CrossRef
Google scholar
|
[9] |
Wu D, Chen Y, Liu J, Zhao X, Li A, Ming N. Co-doped titanate nanotubes. Appl Phys Lett, 2005, 87: 112501—112503
CrossRef
Google scholar
|
[10] |
Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin M Y, Aucouturier M. Structure and physicochemistry of anodic oxide films on titanium and TA6V Alloy. Surf Interface Anal, 1999, 27: 629-637
CrossRef
Google scholar
|
[11] |
Yin Y X, Jin Z G, Hou F. Fabrication and properties of TiO2 nanotube arrays using glycerol-DMSO-H2O electrolyte. Acta Phys-Chim Sin, 2007, 23: 1797-1802
|
[12] |
Shin H J, Jeong D K, Lee J G, Sung M M, Kim J Y. Formation of TiO2 and ZrO2 nanotubes using atomic layer deposition with ultraprecise control of the wall thickness. Adv Mater, 2004, 16: 1197-1200
CrossRef
Google scholar
|
[13] |
Yang H G, Zeng H C. Control of nucleation in solution growth of anatase TiO2 on glass substrate. J Phys Chem B, 2003, 107: 12244-12255
CrossRef
Google scholar
|
[14] |
Pradhan S K, Reucroft P J, Yang F Q, Dozier A. Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J Cryst Growth, 2003, 256: 83-88
CrossRef
Google scholar
|
[15] |
Sander M S, Cote M J, Gu W, Kile B M, Tripp C P. Template-assisted fabrication of dense, aligned arrays of titania nanotubes with well-controlled dimensions on substrates. Adv Mater, 2004, 16: 2052-2057
|
[16] |
Miyauchi M, Tokudome H, Toda Y, Kamiya T, Hosono H. Electron field emission from TiO2 nanotube arrays synthesized by hydrothermal reaction. Appl Phys Lett, 2006, 89: 043114-043116
CrossRef
Google scholar
|
[17] |
Macak J M, Tsuchiya H, Taveira L, Aldabergerova S, Schmuki P. Smooth anodic TiO2 nanotubes. Angew Chem Int Ed, 2005, 44: 7463-7465
CrossRef
Google scholar
|
[18] |
Ghicov A, Tsuchiya H, Macak J M, Schmuki P. Titanium oxide nanotubes prepared in phosphate electrolytes. Electrochem Commun, 2005, 7: 505-509
CrossRef
Google scholar
|
[19] |
Ruan C M, Paulose M, Varghese O K, Mor G K, Grimes C A. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte. J Phys Chem B, 2005, 109: 15754-15759
CrossRef
Google scholar
|
[20] |
Yin Y X, Jin Z G, Hou F, Wang X. Synthesis and morphology of TiO2 nanotube arrays by anodic oxidation using modified glycerol-based electrolytes. J Am Ceram Soc, 2007, 90: 2384-2389
CrossRef
Google scholar
|
[21] |
Heller A. Optically transparent metallic catalysts on Semiconductors. Pure Appl Chem, 1986, 58: 1189-1192
CrossRef
Google scholar
|
[22] |
Domen K, Sakata Y, Kudo A, Maruya K, Onishi T. The photocatalytic activity of a platinized titanium dioxide catalyst supported over silica. Bull Chem Soc Jpn, 1988, 61: 359-362
CrossRef
Google scholar
|
[23] |
Nosaka Y, Norimatsu K, Miyama H. The function of metals in metal-compounded semiconductor photocatalysts. Chem Phys Lett, 1984, 106: 128-131
CrossRef
Google scholar
|
[24] |
Chandrasekharan N, Kamat P V. Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J Phys Chem B, 2000, 104: 10851-10857
CrossRef
Google scholar
|
[25] |
Silva W E, Alves S, De Farias R F. Synthesis, characterization and thermogravimetric study of Eu(III), Tm (III), Fe(III), Cr(II), Ni(II), Co(II), Cu(II), Pb(II) and Hg(II) coordination compounds with hexamethylenetetramine. J Coord Chem, 2004, 57: 967-971
CrossRef
Google scholar
|
[26] |
Liu Z L, Lee J Y, Chen W X, Han M, Gan L M. Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles. Langmuir, 2004, 20: 181-187
CrossRef
Google scholar
|
/
〈 | 〉 |