REVIEW ARTICLE

Materials and surface engineering to control bacterial adhesion and biofilm formation: A review of recent advances

  • Huan GU 1 ,
  • Dacheng REN , 1,2
Expand
  • 1. Department of Biomedical and Chemical Engineering, Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY 13244, USA
  • 2. Department of Civil and Environmental Engineering, Department of Biology, Syracuse University, Syracuse, NY 13244, USA

Received date: 03 Jan 2014

Accepted date: 10 Jan 2014

Published date: 05 Mar 2014

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Bacterial adhesion to surfaces and subsequent biofilm formation are a leading cause of chronic infections and biofouling. These processes are highly sensitive to environmental factors and present a challenge to research using traditional approaches with uncontrolled surfaces. Recent advances in materials research and surface engineering have brought exciting opportunities to pattern bacterial cell clusters and to obtain synthetic biofilms with well-controlled cell density and morphology of cell clusters. In this article, we will review the recent achievements in this field and comment on the future directions.

Cite this article

Huan GU , Dacheng REN . Materials and surface engineering to control bacterial adhesion and biofilm formation: A review of recent advances[J]. Frontiers of Chemical Science and Engineering, 2014 , 8(1) : 20 -33 . DOI: 10.1007/s11705-014-1412-3

1
Donlan R M. Biofilm formation: A clinically relevant microbiological process. Clinical Infectious Diseases, 2001, 33(8): 1387–1392

DOI

2
Walker J, Surman S, Jass J. Industrial Biofouling: Detection, Prevention and Control. Wiley, 2000: 1–12

3
Banerjee I, Pangule R C, Kane R S. Antifouling coatings: Recent developments in the des-ign of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials, 2011, 23(6): 690–718

DOI

4
Davey M E, O'Toole G A. Microbial biofilms: From ecology to molecular genetics. Microbiology and Molecular Biology Reviews, 2000, 64(4): 847–867

DOI

5
Donlan R M. Biofilms: Microbial life on surfaces. Emerging Infectious Diseases, 2002, 8(9): 881–890

DOI

6
Dunne W M. Bacterial adhesion: Seen any good biofilms lately? Clinical Microbiology Reviews, 2002, 15(2): 155–166

DOI

7
Stoodley P, Sauer K, Davies D G, Costerton J W. Biofilms as complex differentiated communities. Annual Review of Microbiology, 2002, 56(1): 187–209

DOI

8
Van Houdt R, Michiels C W. Role of bacterial cell surface structures in Escherichia coli biofilm formation. Research in Microbiology, 2005, 156(5–6): 626–633

DOI

9
Bullitt E, Makowski L. Structural polymorphism of bacterial adhesion pili. Nature, 1995, 373(6510): 164–167

DOI

10
Thomas W E, Nilsson L M, Forero M, Sokurenko E V, Vogel V. Shear-dependent “stick-and-roll” adhesion of type 1 fimbriated Escherichia coli. Molecular Microbiology, 2004, 53(5): 1545–1557

DOI

11
Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiology and Molecular Biology Reviews, 2009, 73(2): 310–347

DOI

12
Palmer J, Flint S, Brooks J. Bacterial cell attachment, the beginning of a biofilm. Journal of Industrial Microbiology & Biotechnology, 2007, 34(9): 577–588

DOI

13
Marshall K C, Stout R, Mitchell R. Mechanisms of the initial events in the absorption of marine bacteria to surfaces. Journal of General Microbiology, 1971, 68(3): 337–348

DOI

14
Das T, Manefield M. Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa. PLoS ONE, 2012, 7(10): e46718

DOI

15
Renner L D, Weibel D B. Physicochemical regulation of biofilm formation. MRS bulletin/Materials Research Society, 2011, 36(5): 347–355

16
Harmsen M, Yang L, Pamp S J, Tolker-Nielsen T. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunology and Medical Microbiology, 2010, 59(3): 253–268

17
Jayaraman A, Wood T K. Bacterial quorum sensing: Signals, circuits, and implications for biofilms and disease. Annual Review of Biomedical Engineering, 2008, 10(1): 145–167

DOI

18
Ma L, Conover M, Lu H, Parsek M R, Bayles K, Wozniak D J. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathogens, 2009, 5(3): e1000354

DOI

19
Ryu J H, Beuchat L R. Biofilm formation by Escherichia coli O157:H7 on stainless steel: Effect of exopolysaccharide and curli production on its resistance to chlorine. Applied and Environmental Microbiology, 2005, 71(1): 247–254

DOI

20
Prigent-Combaret C, Prensier G, Le Thi T T, Vidal O, Lejeune P, Dorel C. Developmental pathway for biofilm formation in curli-producing Escherichia coli strains:Rrole of flagella, curli and colanic acid. Environmental Microbiology, 2000, 2(4): 450–464

DOI

21
Hammer B K, Bassler B L. Quorum sensing controls biofilm formation in Vibrio cholerae. Molecular Microbiology, 2003, 50(1): 101–104

DOI

22
Tischler A D, Camilli A. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Molecular Microbiology, 2004, 53(3): 857–869

DOI

23
Berk V, Fong J C N, Dempsey G T, Develioglu O N, Zhuang X, Liphardt J, Yildiz F H, Chu S. Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science, 2012, 337(6091): 236–239

DOI

24
Banin E, Vasil M L, Greenberg E P. Iron and Pseudomonas aeruginosa biofilm formation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(31): 11076–11081

DOI

25
Barrio A F G, Zuo R, Hashimoto Y, Yang L, Bentley W E, Wood T K. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). Journal of Bacteriology, 2006, 188(1): 305–316

DOI

26
Wang X, Preston J F, Romeo T. The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. Journal of Bacteriology, 2004, 186(9): 2724–2734

DOI

27
Jackson D W, Suzuki K, Oakford L, Simecka J W, Hart M E, Romeo T. Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. Journal of Bacteriology, 2002, 184(1): 290–301

DOI

28
Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penades J R. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. Journal of Bacteriology, 2001, 183(9): 2888–2896

DOI

29
Pierce C G, Uppuluri P, Lopez-Ribot J L. A method for the formation of Candida biofilms in 96 well microtiter plates and its application to antifungal susceptibility testing. In: Gupta V K, Tuohy M G, Ayyachamy M A, et al., eds. Laboratory Protocols in Fungal Biology. Berlin: Springer, 2013, 217–223

30
Ghigo J M. Natural conjugative plasmids induce bacterial biofilm development. Nature, 2001, 412(6845): 442–445

DOI

31
Pratt L A, Kolter R. Genetic analysis of Escherichia coli biofilm formation: Roles of flagella, motility, chemotaxis and type I pili. Molecular Microbiology, 1998, 30(2): 285–293

DOI

32
Klausen M, Heydorn A, Ragas P, Lambersten L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Molecular Microbiology, 2003, 48(6): 1511–1524

DOI

33
Whitchurch C B, Tolker-Nielsen T, Ragas P C, Mattick J S. Extracellular DNA required for bacterial biofilm formation. Science, 2002, 295(5559): 1487

DOI

34
An Y H, Friedman R J. An Y H, Friedman R J. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. Journal of Biomedical Materials Research, 1998, 43(3): 338–348

DOI

35
MacKintosh E E, Patel J D, Marchant R E, Anderson J M. Effects of biomaterial surface chemistry on the adhesion and biofilm formation of Staphylococcus epidermidis in vitro. Journal of Biomedical Materials Research. Part A, 2006, 78(4): 836–842

DOI

36
Agladze K, Wang X, Romeo T. Spatial periodicity of Escherichia coli K12 biofilm microstructure initiates during a reversible, polar attachment phase of development and requires the polysaccharide adhesin PGA. Journal of Bacteriology, 2005, 187(24): 8237–8246

DOI

37
Wimpenny J, Manz W, Szewzyk U. Heterogeneity in biofilms. FEMS Microbiology Reviews, 2000, 24(5): 661–671

DOI

38
Stewart P S, Franklin M J. Physiological heterogeneity in biofilms. Nature Reviews. Microbiology, 2008, 6(3): 199–210

DOI

39
Weibel D B, Diluzio W R, Whitesides G M. Microfabrication meets microbiology. Nature Reviews. Microbiology, 2007, 5(3): 209–218

DOI

40
O'Toole G A, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology, 1998, 30(2): 295–304

DOI

41
Heydorn A, Ersboll B, Kato J, Hentzer M, Parsek M R, Tolker-Nielsen T, Givskov M, Molin S. Statistical analysis of Pseudomonas aeruginosa biofilm development: Impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Applied and Environmental Microbiology, 2002, 68(4): 2008–2017

DOI

42
Reisner A, Haagensen J A, Schembri M A, Zechner E L, Molin S. Development and maturation of Escherichia coli K-12 biofilms. Molecular Microbiology, 2003, 48(4): 933–946

DOI

43
Corona-Izquierdo F P, Membrillo-Hernandez J. A mutation in rpoS enhances biofilm formation in Escherichia coli during exponential phase of growth. FEMS Microbiology Letters, 2002, 211(1): 105–110

DOI

44
Schembri M A, Kjaergaard K, Klemm P. Global gene expression in Escherichia coli biofilms. Molecular Microbiology, 2003, 48(1): 253–267

DOI

45
Ling H, Kang A, Tan M H, Qi X, Chang M W. The absence of the luxS gene increases swimming motility and flagella synthesis in Escherichia coli K12. Biochemical and Biophysical Research Communications, 2010, 401(4): 521–526

DOI

46
Davies D G, Parsek M R, Pearson J P, Iglewski B H, Costerton J W, Greenberg E P. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 1998, 280(5361): 295–298

DOI

47
Baca H K, Ashley C, Carnes E, Lopez D, Flemming J, Dunphy D, Singh S, Chen Z, Liu N, Fan H, Lopez G P, Brozik S M, Werner-Washburne M, Brinker C J. Cell-directed assembly of lipid-silica nanostructures providing extended cell viability. Science, 2006, 313(5785): 337–341

DOI

48
Harper J C, Khirpin C Y, Carnes E C, Ashley C E, Lopez D M, Savage T, Jones H D T, Davis R W, Nunez D E, Brinker L M, Kaehr B, Brozik S M, Brinker C J. Cell-directed integration into three-dimensional lipid-silica nanostructured matrices. ACS Nano, 2010, 4(10): 5539–5550

DOI

49
Lu Y F, Fan H Y, Stump A, Ward T L, Rieker T, Brinker C J. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature, 1999, 398(6724): 223–226

DOI

50
Carnes E C, Lopez D M, Donegan N P, Cheung A, Gresham H, Timmins G S, Brinker J. Confinement-induced quorum sensing of individual Staphylococcus aureus bacteria. Nature Chemical Biology, 2010, 6(1): 41–45

DOI

51
Wessel A K, Hmelo L, Parsek M R, Whiteley M. Going local: Technologies for exploring bacterial microenvironments. Nature Reviews. Microbiology, 2013, 11(5): 337–348

DOI

52
Falconnet D, Csucs G, Grandin H M, Textor M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials, 2006, 27(16): 3044–3063

DOI

53
Leong K, Boardman A K, Ma H, Jen A K. Single-cell patterning and adhesion on chemically engineered poly(dimethylsiloxane) surface. Langmuir, 2009, 25(8): 4615–4620

DOI

54
Takeuchi S, DiLuzio W R, Weibel D B, Whitesides G M. Controlling the shape of filamentous cells of Escherichia coli. Nano Letters, 2005, 5(9): 1819–1823

DOI

55
Hochbaum A I, Aizenberg J. Bacteria pattern spontaneously on periodic nanostructure arrays. Nano Letters, 2010, 10(9): 3717–3721

DOI

56
Kim S H, Yamamoto T, Fourmy D, Fujii T. An electroactive microwell array for trapping and lysing single-bacterial cells. Biomicrofluidics, 2011, 5(2): 024114–024117

DOI

57
Rettig J R, Folch A. Large-scale single-cell trapping and imaging using microwell arrays. Analytical Chemistry, 2005, 77(17): 5628–5634

DOI

58
Lovchik R, Von Arx C, Viviani A, Delamarche E. Cellular microarrays for use with capillary-driven microfluidics. Analytical and Bioanalytical Chemistry, 2008, 390(3): 801–808

DOI

59
Di Carlo D, Aghdam N, Lee L P. Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Analytical Chemistry, 2006, 78(14): 4925–4930

DOI

60
Probst C, Grunberger A, Wiechert W, Kohlheyer D. Polydimethylsiloxane (PDMS) sub-micron traps for single-cell analysis of bacteria. Micromachines, 2013, 4(4): 357–369

DOI

61
Balaban N Q, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch. Science, 2004, 305(5690): 1622–1625

DOI

62
Boedicker J Q, Vincent M E, Ismagilov R F. Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angewandte Chemie International Edition, 2009, 48(32): 5908–5911

DOI

63
Churski K, Kaminski T S, Jakiela S, Kamysz W, Baranska-Rybak W, Weibel D B, Garstecki P. Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab on a Chip, 2012, 12(9): 1629–1637

DOI

64
Schmitz C H, Rowat A C, Koster S, Weitz D A. Dropspots: A picoliter array in a microfluidic device. Lab on a Chip, 2009, 9(1): 44–49

DOI

65
Leung K, Zahn H, Leaver T, Konwar K M, Hanson N W, Page A P, Lo C C, Chain P S, Hallam S J, Hansen C L. A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(20): 7665–7670

DOI

66
Bai Y P, Patil S N, Bowden S D, Poulter S, Pan J, Salmond G P C, Welch M, Huck W T S, Abell C. Intra-species bacterial quorum sensing studied at single cell level in a double droplet trapping system. International Journal of Molecular Sciences, 2013, 14(5): 10570–10581

DOI

67
Kim J H, Lee D Y, Hwang J, Jung H I. Direct pattern formation of bacterial cells using micro-droplets generated by electrohydrodynamic forces. Microfluid Nanofluid, 2009, 7(6): 829–839

DOI

68
Eun Y J, Utada A S, Copeland M F, Takeuchi S, Weibel D B. Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chemical Biology, 2011, 6(3): 260–266

DOI

69
Voskerician G, Shive M S, Shawgo R S, Von Recum H, Anderson J M, Cima M J, Langer R. Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials, 2003, 24(11): 1959–1967

DOI

70
Song H, Ismagilov R F. Millisecond kinetics on a microfluidic chip using nanoliters of reagents. Journal of the American Chemical Society, 2003, 125(47): 14613–14619

DOI

71
Thorsen T, Roberts R W, Arnold F H, Quake S R. Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters, 2001, 86(18): 4163–4166

DOI

72
Baret J C, Miler O J, Taly V, Ryckelynck M, El-Harrak A, Frenz L, Rick C, Samuels M L, Hutchison J B, Agresti J J, Link D R, Weitz D A, Griffiths A D. Fluorescence-activated droplet sorting (FADS): Efficient microfluidic cell sorting based on enzymatic activity. Lab on a Chip, 2009, 9(13): 1850–1858

DOI

73
Ahn K, Kerbage C, Hunt T P, Westervelt R M, Link D R, Weitz D A. Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Applied Physics Letters, 2006, 88(2): 024104-1–024104-3

DOI

74
Zeng Y, Novak R, Shuga J, Smith M T, Mathies R A. High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Analytical Chemistry, 2010, 82(8): 3183–3190

DOI

75
Weibel D B, Lee A, Mayer M, Brady S F, Bruzewicz D, Yang J, Diluzio W R, Clardy J, Whitesides G M. Whitesides. Bacterial printing press that regenerates its ink: Contact-printing bacteria using hydrogel stamps. Langmuir, 2005, 21(14): 6436–6442

DOI

76
Yamazoe H, Tanabe T. Cell micropatterning on an albumin-based substrate using an inkjet printing technique. Journal of Biomedical Materials Research. Part A, 2009, 91(4): 1202–1209

DOI

77
Merrin J, Leibler S, Chuang J S. Printing multistrain bacterial patterns with a piezoelectric inkjet printer. PLoS One, 2007, 2(7): e663-1–e663-7

78
Liberski A R, Delaney J T, Schuber U S. “One cell-one well”: A new approach to inkjet printing single cell microarrays. ACS Combinatorial Science, 2011, 13(2): 190–195

DOI

79
Choi W S, Ha D, Park S, Kim T. Synthetic multicellular cell-to-cell communication in inkjet printed bacterial cell systems. Biomaterials, 2011, 32(10): 2500–2507

DOI

80
Kaehr B, Shear J B. Mask-directed multiphoton lithography. Journal of the American Chemical Society, 2007, 129(7): 1904–1905

DOI

81
Connell J L, Wessel A K, Parsek M R, Ellington A D, Whiteley M, Shear J B. Probing prokaryotic social behaviors with bacterial “lobster traps”. mBio, 2010, 1(4): e00202–00210

82
Connell J L, Ritschdorff E T, Whiteley M, Shear J B. 3D printing of microscopic bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(46): 18380–18385

DOI

83
Flickinger S T, Copeland M F, Downes E M, Braasch A T, Tuson H H, Eun Y J, Weibel D B. Quorum sensing between Pseudomonas aeruginosa biofilms accelerates cell growth. Journal of the American Chemical Society, 2011, 133(15): 5966–5975

DOI

84
Timp W, Mirsaidov U, Matsudaira P, Timp G. Jamming prokaryotic cell-to-cell communications in a model biofilm. Lab on a Chip, 2009, 9(7): 925–934

DOI

85
Meyer A, Megerle J A, Kuttler C, Muler J, Aguilar C, Eber L, Hense B A, Radler J O. Dynamics of AHL mediated quorum sensing under flow and non-flow conditions. Physical Biology, 2012, 9(2): 026007–026010

DOI

86
Hill R T, Lyon J L, Allen R, Stevenson K J, Shear J B. Microfabrication of three-dimensional bioelectronic architectures. Journal of the American Chemical Society, 2005, 127(30): 10707–10711

DOI

87
Kaehr B, Allen R, Javier D J, Currie J, Shear J B. Guiding neuronal development with in situ microfabrication. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(46): 16104–16108

DOI

88
Kaehr B, Shear J B. Multiphoton fabrication of chemically responsive protein hydrogels for microactuation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(26): 8850–8854

DOI

89
Mashburn L M, Jett A M, Akins D R, Whiteley M. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. Journal of Bacteriology, 2005, 187(2): 554–566

DOI

90
Dilanji G E, Langebrake J B, Leenheer P D, Hagen S J. Quorum activation at a distance: Spatiotemporal patterns of gene regulation from diffusion of an autoinducer signal. Journal of the American Chemical Society, 2012, 134(12): 5618–5626

DOI

91
Quist A P, Pavlovic E, Oscarsson S. Recent advances in microcontact printing. Analytical and Bioanalytical Chemistry, 2005, 381(3): 591–600

DOI

92
Sgarbi N, Pisignano D, Di Benedetto F, Gigli G, Cingolani R, Rinaldi R. Self-assembled extracellular matrix protein networks by microcontact printing. Biomaterials, 2004, 25(7–8): 1349–1353

DOI

93
Hou S, Burton E A, Simon K A, Blodgett D, Luk Y Y, Ren D C. Inhibition of Escherichia coli biofilm formation by self-assembled monolayers of functional alkanethiols on gold. Applied and Environmental Microbiology, 2007, 73(13): 4300–4307

DOI

94
St John P M, Davis R, Cady N, Czajka J, Batt C A, Craighead H G. Diffraction-based cell detection using a microcontact printed antibody grating. Analytical Chemistry, 1998, 70(6): 1108–1111

DOI

95
Morhard F, Pipper J, Dahint R, Grunze M. Immobilization of antibodies in micropatterns for cell detection by optical diffraction. Sensors and Actuators. B, Chemical, 2000, 70(1–3): 232–242

DOI

96
Howell S W, Inerowicz H D, Regnier F E, Reifenberger R. Pattern protein microarrays for bacterial detection. Langmuir, 2003, 19(2): 436–439

DOI

97
Suh K Y, Khademhosseini A, Yoo P J, Langer R. Patterning and separating infected bacteria using host-parasite and virus-antibody interactions. Biomedical Microdevices, 2004, 6(3): 223–229

DOI

98
Sun K, Xie Y, Ye D, Zhao Y, Cui Y, Long F, Zhang W, Jiang X. Mussel-inspired anchoring for patterning cells using polydopamine. Langmuir, 2012, 28(4): 2131–2136

DOI

99
Love J C, Estroff L A, Kriebel J K, Nuzzo R G, Whitesides G M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews, 2005, 105(4): 1103–1169

DOI

100
Rowan B, Wheeler M A, Crooks R M. Patterning bacteria within hyperbranched polymer film templates. Langmuir, 2002, 18(25): 9914–9917

DOI

101
Rozhok S, Shen C K, Littler P L, Fan Z, Liu C, Mirkin C A, Holz R C. Methods for fabricating microarrays of motile bacteria. Small, 2005, 1(4): 445–451

DOI

102
Hou S, Burton E A, Wu R L, Luk Y Y, Ren D. Prolonged control of patterned biofilm formation by bio-inert surface chemistry. Chemical Communications, 2009, 10: 1207–1209

DOI

103
Gu H, Hou S, Yongyat C, De Tore S, Ren D C. Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms. Langmuir, 2013, 29(35): 11145–11153

DOI

104
Pate K, Wilson M, Parkin I P. Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. Journal of Materials Chemistry, 2009, 19(23): 3819–3831

DOI

105
Bixler G D, Bhushan B. Biofouling: Lessons from nature. Philosophical Transactions A Mathematical Physcial &. Engineering and Science, 2012, 370(1967): 2381–2417

106
Celia E, Darmanin T, Taffin de Givenchy E, Amigoni S, Guittard F. Recent advances in designing superhydrophobic surfaces. Journal of Colloid and Interface Science, 2013, 402: 1–18

DOI

107
Kamegawa T, Shimizu Y, Yamashita H. Superhydrophobic surfaces with photocatalytic self-cleaning properties by nanocomposite coating of TiO2 and polytetrafluoroethylene. Advanced Materials, 2012, 24(27): 3697–3700

DOI

108
Wu Z P, Xu Q F, Wang J N, Ma J. Preparation of large area double-walled carbon nanotube macro-films with self-cleaning properties. Journal of Materials Science and Technology, 2010, 26(1): 20–26

DOI

109
Shang H M, Wang Y, Limmer S J, Chou T P, Takahashi K, Cao G Z. Optically transparent superhydrophobic silica-based films. Thin Solid Films, 2005, 472(1–2): 37–43

DOI

110
Ling X Y, Phang I Y, Vancso G J, Huskens J, Reinhoudt D N. Stable and transparent superhydrophobic nanoparticle films. Langmuir, 2009, 25(5): 3260–3263

DOI

111
Bravo J, Zhai L, Wu Z, Cohen R E, Rubner M F. Transparent superhydrophobic films based on silica nanoparticles. Langmuir, 2007, 23(13): 7293–7298

DOI

112
Yang J, Zhang Z Z, Men X H, Xu X H. Fabrication of stable, transparent and superhydrophobic nanocomposite films with polystyrene functionalized carbon nanotubes. Applied Surface Science, 2009, 255(22): 9244–9247

DOI

113
Wu D, Ming W, Benthem V R. Width. Superhydrophobic fluorinated polyurethane films. Journal of Adhesion Science and Technology, 2008, 22(15): 1869–1881

DOI

114
Coulson S R, Woodward I, Badyal J P S, Brewer S A, Willis C. Super-repellent composite fluoropolymer surfaces. Journal of Physical Chemistry B, 2000, 104(37): 8836–8840

DOI

115
Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202(1): 1–8

DOI

116
Ensikat H J, Ditsche-Kuru P, Neinhuis C, Barthlott W. Superhydrophobicity in perfection: The outstanding properties of the lotus leaf. Beilstein Journal of Nanotechnology, 2011, 2: 152–161

DOI

117
Gao L C, McCarthy T J. The “lotus effect” explained: Two reasons why two length scales of topography are important. Langmuir, 2006, 22(7): 2966–2967

DOI

118
Marmur A. The lotus effect: Superhydrophobicity and metastability. Langmuir, 2004, 20(9): 3517–3519

DOI

119
Ganesh V A, Raut H K, Nair A S, Ramakrishna S. A review on self-cleaning coatings. Journal of Materials Chemistry, 2011, 21(41): 16304–16322

DOI

120
Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 2011, 477(7365): 443–447

DOI

121
Liu K S, Jiang L. Bio-inspired self-cleaning surfaces. Annual Review of Materials Research, 2012, 42(1): 231–263

DOI

122
Nishimoto S, Bhushan B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Advances, 2013, 3(3): 671–690

DOI

123
Kirschner C M, Brennan A B. Bio-inspired antifouling strategies. Annual Review of Materials Research, 2012, 42(1): 211–229

DOI

124
Genzer J, Efimenko K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review. Biofouling, 2006, 22(5): 339–360

DOI

125
Pernites R B, Santos C M, Maldonado M, Ponnapati R R, Rodrigues D F, Advincula R C. Tunable protein and bacterial cell adsorption on colloidally templated superhydrophobic polythiophene films. Chemistry of Materials, 2012, 24(5): 870–880

DOI

126
Moafi H F, Shojaie A F, Zanjanchi M A. Photocatalytic self-cleaning properties of cellulosic fibers modified by nano-sized zinc oxide. Thin Solid Films, 2011, 519(11): 3641–3646

DOI

127
Zhang L, Diller R, Bahnemann D, Vormoor M. Photo-induced hydrophilicity and self-cleaning: Models and reality. Energy & Environmental Science., 2012, 5(6): 7491–7507

DOI

128
Ganesh V A, Nair A S, Raut H K, Walsh T M, Ramakrishna S. Photocatalytic superhydrophilic TiO2 coating on glass by electrospinning. RSC Advances, 2012, 2(5): 2067–2072

DOI

129
Xi B, Verma L K, Li J, Bhatia C S, Danner J, Yang H, Zeng H C. TiO2 thin films prepared via adsorptive self-assembly for self-cleaning applications. ACS Applied Materials & Interfaces, 2012, 4(2): 1093–1102

DOI

130
Afzai S, Daoud W A, Langford S J. Photostable self-cleaning cotton by a copper(II) porphyrin/TiO2 visible-light photocatalytic system. ACS Applied Materials & Interfaces, 2013, 5(11): 4753–4759

DOI

131
Ohko Y, Utsumi Y, Niwa C, Tatsuma T, Kobayakawa K, Satoh Y, Kubota Y, Fujishima A. Self-sterilizing and self-cleaning of silicone catheters coated with TiO2 photocatalyst thin films: A preclinical work. Journal of Biomedical Materials Research, 2001, 58(1): 97–101

DOI

132
Joshi A, Punyani S, Borca-Tascuic T, Kane R S. Nanotube-assisted protein deactivation. Nature Nanotechnology, 2008, 3(1): 41–45

DOI

133
Chung K K, Schumacher J F, Sampson E M, Burne R A, Antonelli P J, Brennan A B. Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus. Biointerphases, 2007, 2(2): 89–94

DOI

134
Carman M L, Estes T G, Feinberg A W, Schumacher J F, Wilkerson W, Wilson L H, Callow M E, Callow J A, Brennan A B. Engineered antifouling microtopographies-Correlating wettability with cell attachment. Biofouling, 2006, 22(1): 1–11

DOI

135
Schumacher J F, Carman M L, Estes T G, Feinberg A W, Wilson L H, Callow M E, Callow J A, Finlay J A, Brennan A B. Engineered antifouling microtopographies-Effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva. Biofouling, 2007, 23(1): 55–62

DOI

136
He X, Aizenberg M, Kuksenok O, Zarzar L D, Shastri A, Balazs A C, Aizenberg J. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature, 2012, 487(7406): 214–218

DOI

137
Stuart M A C, Huck W T S, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Emerging applications of stimuli-responsive polymer materials. Nature Materials, 2010, 9(2): 101–113

DOI

138
Lahann J, Mitragotri S, Tran T N, Kaido H, Sundaram J, Choi I S, Hoffer S, Somorjai G A, Langer R. A reversibly switching surfaces. Science, 2003, 299(5605): 371–374

DOI

139
Urban A M, Urban M W. Stimuli-responsive polymeric films and coatings. American Chemical Society, 2005, 912: 1

140
Ista L K, Mendez S, Lopez G P. Attachment and detachment of bacteria on surfaces with tunable and switchable wettability. Biofouling, 2010, 26(1): 111–118

DOI

141
Ista L K, Perez-Luna V H, Lopez G P. Surface-grafted, environmentally sensitive polymers for biofilm release. Applied and Environmental Microbiology, 1999, 65(4): 1603–1609

142
Ista L K, Lopez G P. Lower critical solubility temperature materials as biofouling release agents. Journal of Industrial Microbiology & Biotechnology, 1998, 20: 121–125

DOI

143
Ista L K, Mendez S, Perez-Luna V H, Lopez G P. Synthesis of poly(N-isopropylacrylamide) on initiator-modified self-assembled monolayers. Langmuir, 2001, 17(9): 2552–2555

DOI

Outlines

/