Materials and surface engineering to control bacterial adhesion and biofilm formation: A review of recent advances

Huan GU, Dacheng REN

PDF(920 KB)
PDF(920 KB)
Front. Chem. Sci. Eng. ›› 2014, Vol. 8 ›› Issue (1) : 20-33. DOI: 10.1007/s11705-014-1412-3
REVIEW ARTICLE
REVIEW ARTICLE

Materials and surface engineering to control bacterial adhesion and biofilm formation: A review of recent advances

Author information +
History +

Abstract

Bacterial adhesion to surfaces and subsequent biofilm formation are a leading cause of chronic infections and biofouling. These processes are highly sensitive to environmental factors and present a challenge to research using traditional approaches with uncontrolled surfaces. Recent advances in materials research and surface engineering have brought exciting opportunities to pattern bacterial cell clusters and to obtain synthetic biofilms with well-controlled cell density and morphology of cell clusters. In this article, we will review the recent achievements in this field and comment on the future directions.

Keywords

surface engineering / materials / bacterial adhesion / biofilm / control / review

Cite this article

Download citation ▾
Huan GU, Dacheng REN. Materials and surface engineering to control bacterial adhesion and biofilm formation: A review of recent advances. Front Chem Sci Eng, 2014, 8(1): 20‒33 https://doi.org/10.1007/s11705-014-1412-3

References

[1]
Donlan R M. Biofilm formation: A clinically relevant microbiological process. Clinical Infectious Diseases, 2001, 33(8): 1387–1392
CrossRef Google scholar
[2]
Walker J, Surman S, Jass J. Industrial Biofouling: Detection, Prevention and Control. Wiley, 2000: 1–12
[3]
Banerjee I, Pangule R C, Kane R S. Antifouling coatings: Recent developments in the des-ign of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials, 2011, 23(6): 690–718
CrossRef Google scholar
[4]
Davey M E, O'Toole G A. Microbial biofilms: From ecology to molecular genetics. Microbiology and Molecular Biology Reviews, 2000, 64(4): 847–867
CrossRef Google scholar
[5]
Donlan R M. Biofilms: Microbial life on surfaces. Emerging Infectious Diseases, 2002, 8(9): 881–890
CrossRef Google scholar
[6]
Dunne W M. Bacterial adhesion: Seen any good biofilms lately? Clinical Microbiology Reviews, 2002, 15(2): 155–166
CrossRef Google scholar
[7]
Stoodley P, Sauer K, Davies D G, Costerton J W. Biofilms as complex differentiated communities. Annual Review of Microbiology, 2002, 56(1): 187–209
CrossRef Google scholar
[8]
Van Houdt R, Michiels C W. Role of bacterial cell surface structures in Escherichia coli biofilm formation. Research in Microbiology, 2005, 156(5–6): 626–633
CrossRef Google scholar
[9]
Bullitt E, Makowski L. Structural polymorphism of bacterial adhesion pili. Nature, 1995, 373(6510): 164–167
CrossRef Google scholar
[10]
Thomas W E, Nilsson L M, Forero M, Sokurenko E V, Vogel V. Shear-dependent “stick-and-roll” adhesion of type 1 fimbriated Escherichia coli. Molecular Microbiology, 2004, 53(5): 1545–1557
CrossRef Google scholar
[11]
Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiology and Molecular Biology Reviews, 2009, 73(2): 310–347
CrossRef Google scholar
[12]
Palmer J, Flint S, Brooks J. Bacterial cell attachment, the beginning of a biofilm. Journal of Industrial Microbiology & Biotechnology, 2007, 34(9): 577–588
CrossRef Google scholar
[13]
Marshall K C, Stout R, Mitchell R. Mechanisms of the initial events in the absorption of marine bacteria to surfaces. Journal of General Microbiology, 1971, 68(3): 337–348
CrossRef Google scholar
[14]
Das T, Manefield M. Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa. PLoS ONE, 2012, 7(10): e46718
CrossRef Google scholar
[15]
Renner L D, Weibel D B. Physicochemical regulation of biofilm formation. MRS bulletin/Materials Research Society, 2011, 36(5): 347–355
[16]
Harmsen M, Yang L, Pamp S J, Tolker-Nielsen T. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal. FEMS Immunology and Medical Microbiology, 2010, 59(3): 253–268
[17]
Jayaraman A, Wood T K. Bacterial quorum sensing: Signals, circuits, and implications for biofilms and disease. Annual Review of Biomedical Engineering, 2008, 10(1): 145–167
CrossRef Google scholar
[18]
Ma L, Conover M, Lu H, Parsek M R, Bayles K, Wozniak D J. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathogens, 2009, 5(3): e1000354
CrossRef Google scholar
[19]
Ryu J H, Beuchat L R. Biofilm formation by Escherichia coli O157:H7 on stainless steel: Effect of exopolysaccharide and curli production on its resistance to chlorine. Applied and Environmental Microbiology, 2005, 71(1): 247–254
CrossRef Google scholar
[20]
Prigent-Combaret C, Prensier G, Le Thi T T, Vidal O, Lejeune P, Dorel C. Developmental pathway for biofilm formation in curli-producing Escherichia coli strains:Rrole of flagella, curli and colanic acid. Environmental Microbiology, 2000, 2(4): 450–464
CrossRef Google scholar
[21]
Hammer B K, Bassler B L. Quorum sensing controls biofilm formation in Vibrio cholerae. Molecular Microbiology, 2003, 50(1): 101–104
CrossRef Google scholar
[22]
Tischler A D, Camilli A. Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Molecular Microbiology, 2004, 53(3): 857–869
CrossRef Google scholar
[23]
Berk V, Fong J C N, Dempsey G T, Develioglu O N, Zhuang X, Liphardt J, Yildiz F H, Chu S. Molecular architecture and assembly principles of Vibrio cholerae biofilms. Science, 2012, 337(6091): 236–239
CrossRef Google scholar
[24]
Banin E, Vasil M L, Greenberg E P. Iron and Pseudomonas aeruginosa biofilm formation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(31): 11076–11081
CrossRef Google scholar
[25]
Barrio A F G, Zuo R, Hashimoto Y, Yang L, Bentley W E, Wood T K. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). Journal of Bacteriology, 2006, 188(1): 305–316
CrossRef Google scholar
[26]
Wang X, Preston J F, Romeo T. The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. Journal of Bacteriology, 2004, 186(9): 2724–2734
CrossRef Google scholar
[27]
Jackson D W, Suzuki K, Oakford L, Simecka J W, Hart M E, Romeo T. Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. Journal of Bacteriology, 2002, 184(1): 290–301
CrossRef Google scholar
[28]
Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penades J R. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. Journal of Bacteriology, 2001, 183(9): 2888–2896
CrossRef Google scholar
[29]
Pierce C G, Uppuluri P, Lopez-Ribot J L. A method for the formation of Candida biofilms in 96 well microtiter plates and its application to antifungal susceptibility testing. In: Gupta V K, Tuohy M G, Ayyachamy M A, et al., eds. Laboratory Protocols in Fungal Biology. Berlin: Springer, 2013, 217–223
[30]
Ghigo J M. Natural conjugative plasmids induce bacterial biofilm development. Nature, 2001, 412(6845): 442–445
CrossRef Google scholar
[31]
Pratt L A, Kolter R. Genetic analysis of Escherichia coli biofilm formation: Roles of flagella, motility, chemotaxis and type I pili. Molecular Microbiology, 1998, 30(2): 285–293
CrossRef Google scholar
[32]
Klausen M, Heydorn A, Ragas P, Lambersten L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Molecular Microbiology, 2003, 48(6): 1511–1524
CrossRef Google scholar
[33]
Whitchurch C B, Tolker-Nielsen T, Ragas P C, Mattick J S. Extracellular DNA required for bacterial biofilm formation. Science, 2002, 295(5559): 1487
CrossRef Google scholar
[34]
An Y H, Friedman R J. An Y H, Friedman R J. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. Journal of Biomedical Materials Research, 1998, 43(3): 338–348
CrossRef Google scholar
[35]
MacKintosh E E, Patel J D, Marchant R E, Anderson J M. Effects of biomaterial surface chemistry on the adhesion and biofilm formation of Staphylococcus epidermidis in vitro. Journal of Biomedical Materials Research. Part A, 2006, 78(4): 836–842
CrossRef Google scholar
[36]
Agladze K, Wang X, Romeo T. Spatial periodicity of Escherichia coli K12 biofilm microstructure initiates during a reversible, polar attachment phase of development and requires the polysaccharide adhesin PGA. Journal of Bacteriology, 2005, 187(24): 8237–8246
CrossRef Google scholar
[37]
Wimpenny J, Manz W, Szewzyk U. Heterogeneity in biofilms. FEMS Microbiology Reviews, 2000, 24(5): 661–671
CrossRef Google scholar
[38]
Stewart P S, Franklin M J. Physiological heterogeneity in biofilms. Nature Reviews. Microbiology, 2008, 6(3): 199–210
CrossRef Google scholar
[39]
Weibel D B, Diluzio W R, Whitesides G M. Microfabrication meets microbiology. Nature Reviews. Microbiology, 2007, 5(3): 209–218
CrossRef Google scholar
[40]
O'Toole G A, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology, 1998, 30(2): 295–304
CrossRef Google scholar
[41]
Heydorn A, Ersboll B, Kato J, Hentzer M, Parsek M R, Tolker-Nielsen T, Givskov M, Molin S. Statistical analysis of Pseudomonas aeruginosa biofilm development: Impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Applied and Environmental Microbiology, 2002, 68(4): 2008–2017
CrossRef Google scholar
[42]
Reisner A, Haagensen J A, Schembri M A, Zechner E L, Molin S. Development and maturation of Escherichia coli K-12 biofilms. Molecular Microbiology, 2003, 48(4): 933–946
CrossRef Google scholar
[43]
Corona-Izquierdo F P, Membrillo-Hernandez J. A mutation in rpoS enhances biofilm formation in Escherichia coli during exponential phase of growth. FEMS Microbiology Letters, 2002, 211(1): 105–110
CrossRef Google scholar
[44]
Schembri M A, Kjaergaard K, Klemm P. Global gene expression in Escherichia coli biofilms. Molecular Microbiology, 2003, 48(1): 253–267
CrossRef Google scholar
[45]
Ling H, Kang A, Tan M H, Qi X, Chang M W. The absence of the luxS gene increases swimming motility and flagella synthesis in Escherichia coli K12. Biochemical and Biophysical Research Communications, 2010, 401(4): 521–526
CrossRef Google scholar
[46]
Davies D G, Parsek M R, Pearson J P, Iglewski B H, Costerton J W, Greenberg E P. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 1998, 280(5361): 295–298
CrossRef Google scholar
[47]
Baca H K, Ashley C, Carnes E, Lopez D, Flemming J, Dunphy D, Singh S, Chen Z, Liu N, Fan H, Lopez G P, Brozik S M, Werner-Washburne M, Brinker C J. Cell-directed assembly of lipid-silica nanostructures providing extended cell viability. Science, 2006, 313(5785): 337–341
CrossRef Google scholar
[48]
Harper J C, Khirpin C Y, Carnes E C, Ashley C E, Lopez D M, Savage T, Jones H D T, Davis R W, Nunez D E, Brinker L M, Kaehr B, Brozik S M, Brinker C J. Cell-directed integration into three-dimensional lipid-silica nanostructured matrices. ACS Nano, 2010, 4(10): 5539–5550
CrossRef Google scholar
[49]
Lu Y F, Fan H Y, Stump A, Ward T L, Rieker T, Brinker C J. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles. Nature, 1999, 398(6724): 223–226
CrossRef Google scholar
[50]
Carnes E C, Lopez D M, Donegan N P, Cheung A, Gresham H, Timmins G S, Brinker J. Confinement-induced quorum sensing of individual Staphylococcus aureus bacteria. Nature Chemical Biology, 2010, 6(1): 41–45
CrossRef Google scholar
[51]
Wessel A K, Hmelo L, Parsek M R, Whiteley M. Going local: Technologies for exploring bacterial microenvironments. Nature Reviews. Microbiology, 2013, 11(5): 337–348
CrossRef Google scholar
[52]
Falconnet D, Csucs G, Grandin H M, Textor M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials, 2006, 27(16): 3044–3063
CrossRef Google scholar
[53]
Leong K, Boardman A K, Ma H, Jen A K. Single-cell patterning and adhesion on chemically engineered poly(dimethylsiloxane) surface. Langmuir, 2009, 25(8): 4615–4620
CrossRef Google scholar
[54]
Takeuchi S, DiLuzio W R, Weibel D B, Whitesides G M. Controlling the shape of filamentous cells of Escherichia coli. Nano Letters, 2005, 5(9): 1819–1823
CrossRef Google scholar
[55]
Hochbaum A I, Aizenberg J. Bacteria pattern spontaneously on periodic nanostructure arrays. Nano Letters, 2010, 10(9): 3717–3721
CrossRef Google scholar
[56]
Kim S H, Yamamoto T, Fourmy D, Fujii T. An electroactive microwell array for trapping and lysing single-bacterial cells. Biomicrofluidics, 2011, 5(2): 024114–024117
CrossRef Google scholar
[57]
Rettig J R, Folch A. Large-scale single-cell trapping and imaging using microwell arrays. Analytical Chemistry, 2005, 77(17): 5628–5634
CrossRef Google scholar
[58]
Lovchik R, Von Arx C, Viviani A, Delamarche E. Cellular microarrays for use with capillary-driven microfluidics. Analytical and Bioanalytical Chemistry, 2008, 390(3): 801–808
CrossRef Google scholar
[59]
Di Carlo D, Aghdam N, Lee L P. Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Analytical Chemistry, 2006, 78(14): 4925–4930
CrossRef Google scholar
[60]
Probst C, Grunberger A, Wiechert W, Kohlheyer D. Polydimethylsiloxane (PDMS) sub-micron traps for single-cell analysis of bacteria. Micromachines, 2013, 4(4): 357–369
CrossRef Google scholar
[61]
Balaban N Q, Merrin J, Chait R, Kowalik L, Leibler S. Bacterial persistence as a phenotypic switch. Science, 2004, 305(5690): 1622–1625
CrossRef Google scholar
[62]
Boedicker J Q, Vincent M E, Ismagilov R F. Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals its variability. Angewandte Chemie International Edition, 2009, 48(32): 5908–5911
CrossRef Google scholar
[63]
Churski K, Kaminski T S, Jakiela S, Kamysz W, Baranska-Rybak W, Weibel D B, Garstecki P. Rapid screening of antibiotic toxicity in an automated microdroplet system. Lab on a Chip, 2012, 12(9): 1629–1637
CrossRef Google scholar
[64]
Schmitz C H, Rowat A C, Koster S, Weitz D A. Dropspots: A picoliter array in a microfluidic device. Lab on a Chip, 2009, 9(1): 44–49
CrossRef Google scholar
[65]
Leung K, Zahn H, Leaver T, Konwar K M, Hanson N W, Page A P, Lo C C, Chain P S, Hallam S J, Hansen C L. A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(20): 7665–7670
CrossRef Google scholar
[66]
Bai Y P, Patil S N, Bowden S D, Poulter S, Pan J, Salmond G P C, Welch M, Huck W T S, Abell C. Intra-species bacterial quorum sensing studied at single cell level in a double droplet trapping system. International Journal of Molecular Sciences, 2013, 14(5): 10570–10581
CrossRef Google scholar
[67]
Kim J H, Lee D Y, Hwang J, Jung H I. Direct pattern formation of bacterial cells using micro-droplets generated by electrohydrodynamic forces. Microfluid Nanofluid, 2009, 7(6): 829–839
CrossRef Google scholar
[68]
Eun Y J, Utada A S, Copeland M F, Takeuchi S, Weibel D B. Encapsulating bacteria in agarose microparticles using microfluidics for high-throughput cell analysis and isolation. ACS Chemical Biology, 2011, 6(3): 260–266
CrossRef Google scholar
[69]
Voskerician G, Shive M S, Shawgo R S, Von Recum H, Anderson J M, Cima M J, Langer R. Biocompatibility and biofouling of MEMS drug delivery devices. Biomaterials, 2003, 24(11): 1959–1967
CrossRef Google scholar
[70]
Song H, Ismagilov R F. Millisecond kinetics on a microfluidic chip using nanoliters of reagents. Journal of the American Chemical Society, 2003, 125(47): 14613–14619
CrossRef Google scholar
[71]
Thorsen T, Roberts R W, Arnold F H, Quake S R. Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters, 2001, 86(18): 4163–4166
CrossRef Google scholar
[72]
Baret J C, Miler O J, Taly V, Ryckelynck M, El-Harrak A, Frenz L, Rick C, Samuels M L, Hutchison J B, Agresti J J, Link D R, Weitz D A, Griffiths A D. Fluorescence-activated droplet sorting (FADS): Efficient microfluidic cell sorting based on enzymatic activity. Lab on a Chip, 2009, 9(13): 1850–1858
CrossRef Google scholar
[73]
Ahn K, Kerbage C, Hunt T P, Westervelt R M, Link D R, Weitz D A. Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Applied Physics Letters, 2006, 88(2): 024104-1–024104-3
CrossRef Google scholar
[74]
Zeng Y, Novak R, Shuga J, Smith M T, Mathies R A. High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Analytical Chemistry, 2010, 82(8): 3183–3190
CrossRef Google scholar
[75]
Weibel D B, Lee A, Mayer M, Brady S F, Bruzewicz D, Yang J, Diluzio W R, Clardy J, Whitesides G M. Whitesides. Bacterial printing press that regenerates its ink: Contact-printing bacteria using hydrogel stamps. Langmuir, 2005, 21(14): 6436–6442
CrossRef Google scholar
[76]
Yamazoe H, Tanabe T. Cell micropatterning on an albumin-based substrate using an inkjet printing technique. Journal of Biomedical Materials Research. Part A, 2009, 91(4): 1202–1209
CrossRef Google scholar
[77]
Merrin J, Leibler S, Chuang J S. Printing multistrain bacterial patterns with a piezoelectric inkjet printer. PLoS One, 2007, 2(7): e663-1–e663-7
[78]
Liberski A R, Delaney J T, Schuber U S. “One cell-one well”: A new approach to inkjet printing single cell microarrays. ACS Combinatorial Science, 2011, 13(2): 190–195
CrossRef Google scholar
[79]
Choi W S, Ha D, Park S, Kim T. Synthetic multicellular cell-to-cell communication in inkjet printed bacterial cell systems. Biomaterials, 2011, 32(10): 2500–2507
CrossRef Google scholar
[80]
Kaehr B, Shear J B. Mask-directed multiphoton lithography. Journal of the American Chemical Society, 2007, 129(7): 1904–1905
CrossRef Google scholar
[81]
Connell J L, Wessel A K, Parsek M R, Ellington A D, Whiteley M, Shear J B. Probing prokaryotic social behaviors with bacterial “lobster traps”. mBio, 2010, 1(4): e00202–00210
[82]
Connell J L, Ritschdorff E T, Whiteley M, Shear J B. 3D printing of microscopic bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(46): 18380–18385
CrossRef Google scholar
[83]
Flickinger S T, Copeland M F, Downes E M, Braasch A T, Tuson H H, Eun Y J, Weibel D B. Quorum sensing between Pseudomonas aeruginosa biofilms accelerates cell growth. Journal of the American Chemical Society, 2011, 133(15): 5966–5975
CrossRef Google scholar
[84]
Timp W, Mirsaidov U, Matsudaira P, Timp G. Jamming prokaryotic cell-to-cell communications in a model biofilm. Lab on a Chip, 2009, 9(7): 925–934
CrossRef Google scholar
[85]
Meyer A, Megerle J A, Kuttler C, Muler J, Aguilar C, Eber L, Hense B A, Radler J O. Dynamics of AHL mediated quorum sensing under flow and non-flow conditions. Physical Biology, 2012, 9(2): 026007–026010
CrossRef Google scholar
[86]
Hill R T, Lyon J L, Allen R, Stevenson K J, Shear J B. Microfabrication of three-dimensional bioelectronic architectures. Journal of the American Chemical Society, 2005, 127(30): 10707–10711
CrossRef Google scholar
[87]
Kaehr B, Allen R, Javier D J, Currie J, Shear J B. Guiding neuronal development with in situ microfabrication. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(46): 16104–16108
CrossRef Google scholar
[88]
Kaehr B, Shear J B. Multiphoton fabrication of chemically responsive protein hydrogels for microactuation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(26): 8850–8854
CrossRef Google scholar
[89]
Mashburn L M, Jett A M, Akins D R, Whiteley M. Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. Journal of Bacteriology, 2005, 187(2): 554–566
CrossRef Google scholar
[90]
Dilanji G E, Langebrake J B, Leenheer P D, Hagen S J. Quorum activation at a distance: Spatiotemporal patterns of gene regulation from diffusion of an autoinducer signal. Journal of the American Chemical Society, 2012, 134(12): 5618–5626
CrossRef Google scholar
[91]
Quist A P, Pavlovic E, Oscarsson S. Recent advances in microcontact printing. Analytical and Bioanalytical Chemistry, 2005, 381(3): 591–600
CrossRef Google scholar
[92]
Sgarbi N, Pisignano D, Di Benedetto F, Gigli G, Cingolani R, Rinaldi R. Self-assembled extracellular matrix protein networks by microcontact printing. Biomaterials, 2004, 25(7–8): 1349–1353
CrossRef Google scholar
[93]
Hou S, Burton E A, Simon K A, Blodgett D, Luk Y Y, Ren D C. Inhibition of Escherichia coli biofilm formation by self-assembled monolayers of functional alkanethiols on gold. Applied and Environmental Microbiology, 2007, 73(13): 4300–4307
CrossRef Google scholar
[94]
St John P M, Davis R, Cady N, Czajka J, Batt C A, Craighead H G. Diffraction-based cell detection using a microcontact printed antibody grating. Analytical Chemistry, 1998, 70(6): 1108–1111
CrossRef Google scholar
[95]
Morhard F, Pipper J, Dahint R, Grunze M. Immobilization of antibodies in micropatterns for cell detection by optical diffraction. Sensors and Actuators. B, Chemical, 2000, 70(1–3): 232–242
CrossRef Google scholar
[96]
Howell S W, Inerowicz H D, Regnier F E, Reifenberger R. Pattern protein microarrays for bacterial detection. Langmuir, 2003, 19(2): 436–439
CrossRef Google scholar
[97]
Suh K Y, Khademhosseini A, Yoo P J, Langer R. Patterning and separating infected bacteria using host-parasite and virus-antibody interactions. Biomedical Microdevices, 2004, 6(3): 223–229
CrossRef Google scholar
[98]
Sun K, Xie Y, Ye D, Zhao Y, Cui Y, Long F, Zhang W, Jiang X. Mussel-inspired anchoring for patterning cells using polydopamine. Langmuir, 2012, 28(4): 2131–2136
CrossRef Google scholar
[99]
Love J C, Estroff L A, Kriebel J K, Nuzzo R G, Whitesides G M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical Reviews, 2005, 105(4): 1103–1169
CrossRef Google scholar
[100]
Rowan B, Wheeler M A, Crooks R M. Patterning bacteria within hyperbranched polymer film templates. Langmuir, 2002, 18(25): 9914–9917
CrossRef Google scholar
[101]
Rozhok S, Shen C K, Littler P L, Fan Z, Liu C, Mirkin C A, Holz R C. Methods for fabricating microarrays of motile bacteria. Small, 2005, 1(4): 445–451
CrossRef Google scholar
[102]
Hou S, Burton E A, Wu R L, Luk Y Y, Ren D. Prolonged control of patterned biofilm formation by bio-inert surface chemistry. Chemical Communications, 2009, 10: 1207–1209
CrossRef Google scholar
[103]
Gu H, Hou S, Yongyat C, De Tore S, Ren D C. Patterned biofilm formation reveals a mechanism for structural heterogeneity in bacterial biofilms. Langmuir, 2013, 29(35): 11145–11153
CrossRef Google scholar
[104]
Pate K, Wilson M, Parkin I P. Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. Journal of Materials Chemistry, 2009, 19(23): 3819–3831
CrossRef Google scholar
[105]
Bixler G D, Bhushan B. Biofouling: Lessons from nature. Philosophical Transactions A Mathematical Physcial &. Engineering and Science, 2012, 370(1967): 2381–2417
[106]
Celia E, Darmanin T, Taffin de Givenchy E, Amigoni S, Guittard F. Recent advances in designing superhydrophobic surfaces. Journal of Colloid and Interface Science, 2013, 402: 1–18
CrossRef Google scholar
[107]
Kamegawa T, Shimizu Y, Yamashita H. Superhydrophobic surfaces with photocatalytic self-cleaning properties by nanocomposite coating of TiO2 and polytetrafluoroethylene. Advanced Materials, 2012, 24(27): 3697–3700
CrossRef Google scholar
[108]
Wu Z P, Xu Q F, Wang J N, Ma J. Preparation of large area double-walled carbon nanotube macro-films with self-cleaning properties. Journal of Materials Science and Technology, 2010, 26(1): 20–26
CrossRef Google scholar
[109]
Shang H M, Wang Y, Limmer S J, Chou T P, Takahashi K, Cao G Z. Optically transparent superhydrophobic silica-based films. Thin Solid Films, 2005, 472(1–2): 37–43
CrossRef Google scholar
[110]
Ling X Y, Phang I Y, Vancso G J, Huskens J, Reinhoudt D N. Stable and transparent superhydrophobic nanoparticle films. Langmuir, 2009, 25(5): 3260–3263
CrossRef Google scholar
[111]
Bravo J, Zhai L, Wu Z, Cohen R E, Rubner M F. Transparent superhydrophobic films based on silica nanoparticles. Langmuir, 2007, 23(13): 7293–7298
CrossRef Google scholar
[112]
Yang J, Zhang Z Z, Men X H, Xu X H. Fabrication of stable, transparent and superhydrophobic nanocomposite films with polystyrene functionalized carbon nanotubes. Applied Surface Science, 2009, 255(22): 9244–9247
CrossRef Google scholar
[113]
Wu D, Ming W, Benthem V R. Width. Superhydrophobic fluorinated polyurethane films. Journal of Adhesion Science and Technology, 2008, 22(15): 1869–1881
CrossRef Google scholar
[114]
Coulson S R, Woodward I, Badyal J P S, Brewer S A, Willis C. Super-repellent composite fluoropolymer surfaces. Journal of Physical Chemistry B, 2000, 104(37): 8836–8840
CrossRef Google scholar
[115]
Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202(1): 1–8
CrossRef Google scholar
[116]
Ensikat H J, Ditsche-Kuru P, Neinhuis C, Barthlott W. Superhydrophobicity in perfection: The outstanding properties of the lotus leaf. Beilstein Journal of Nanotechnology, 2011, 2: 152–161
CrossRef Google scholar
[117]
Gao L C, McCarthy T J. The “lotus effect” explained: Two reasons why two length scales of topography are important. Langmuir, 2006, 22(7): 2966–2967
CrossRef Google scholar
[118]
Marmur A. The lotus effect: Superhydrophobicity and metastability. Langmuir, 2004, 20(9): 3517–3519
CrossRef Google scholar
[119]
Ganesh V A, Raut H K, Nair A S, Ramakrishna S. A review on self-cleaning coatings. Journal of Materials Chemistry, 2011, 21(41): 16304–16322
CrossRef Google scholar
[120]
Wong T S, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 2011, 477(7365): 443–447
CrossRef Google scholar
[121]
Liu K S, Jiang L. Bio-inspired self-cleaning surfaces. Annual Review of Materials Research, 2012, 42(1): 231–263
CrossRef Google scholar
[122]
Nishimoto S, Bhushan B. Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RSC Advances, 2013, 3(3): 671–690
CrossRef Google scholar
[123]
Kirschner C M, Brennan A B. Bio-inspired antifouling strategies. Annual Review of Materials Research, 2012, 42(1): 211–229
CrossRef Google scholar
[124]
Genzer J, Efimenko K. Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review. Biofouling, 2006, 22(5): 339–360
CrossRef Google scholar
[125]
Pernites R B, Santos C M, Maldonado M, Ponnapati R R, Rodrigues D F, Advincula R C. Tunable protein and bacterial cell adsorption on colloidally templated superhydrophobic polythiophene films. Chemistry of Materials, 2012, 24(5): 870–880
CrossRef Google scholar
[126]
Moafi H F, Shojaie A F, Zanjanchi M A. Photocatalytic self-cleaning properties of cellulosic fibers modified by nano-sized zinc oxide. Thin Solid Films, 2011, 519(11): 3641–3646
CrossRef Google scholar
[127]
Zhang L, Diller R, Bahnemann D, Vormoor M. Photo-induced hydrophilicity and self-cleaning: Models and reality. Energy & Environmental Science., 2012, 5(6): 7491–7507
CrossRef Google scholar
[128]
Ganesh V A, Nair A S, Raut H K, Walsh T M, Ramakrishna S. Photocatalytic superhydrophilic TiO2 coating on glass by electrospinning. RSC Advances, 2012, 2(5): 2067–2072
CrossRef Google scholar
[129]
Xi B, Verma L K, Li J, Bhatia C S, Danner J, Yang H, Zeng H C. TiO2 thin films prepared via adsorptive self-assembly for self-cleaning applications. ACS Applied Materials & Interfaces, 2012, 4(2): 1093–1102
CrossRef Google scholar
[130]
Afzai S, Daoud W A, Langford S J. Photostable self-cleaning cotton by a copper(II) porphyrin/TiO2 visible-light photocatalytic system. ACS Applied Materials & Interfaces, 2013, 5(11): 4753–4759
CrossRef Google scholar
[131]
Ohko Y, Utsumi Y, Niwa C, Tatsuma T, Kobayakawa K, Satoh Y, Kubota Y, Fujishima A. Self-sterilizing and self-cleaning of silicone catheters coated with TiO2 photocatalyst thin films: A preclinical work. Journal of Biomedical Materials Research, 2001, 58(1): 97–101
CrossRef Google scholar
[132]
Joshi A, Punyani S, Borca-Tascuic T, Kane R S. Nanotube-assisted protein deactivation. Nature Nanotechnology, 2008, 3(1): 41–45
CrossRef Google scholar
[133]
Chung K K, Schumacher J F, Sampson E M, Burne R A, Antonelli P J, Brennan A B. Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus. Biointerphases, 2007, 2(2): 89–94
CrossRef Google scholar
[134]
Carman M L, Estes T G, Feinberg A W, Schumacher J F, Wilkerson W, Wilson L H, Callow M E, Callow J A, Brennan A B. Engineered antifouling microtopographies-Correlating wettability with cell attachment. Biofouling, 2006, 22(1): 1–11
CrossRef Google scholar
[135]
Schumacher J F, Carman M L, Estes T G, Feinberg A W, Wilson L H, Callow M E, Callow J A, Finlay J A, Brennan A B. Engineered antifouling microtopographies-Effect of feature size, geometry, and roughness on settlement of zoospores of the green alga Ulva. Biofouling, 2007, 23(1): 55–62
CrossRef Google scholar
[136]
He X, Aizenberg M, Kuksenok O, Zarzar L D, Shastri A, Balazs A C, Aizenberg J. Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature, 2012, 487(7406): 214–218
CrossRef Google scholar
[137]
Stuart M A C, Huck W T S, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Emerging applications of stimuli-responsive polymer materials. Nature Materials, 2010, 9(2): 101–113
CrossRef Google scholar
[138]
Lahann J, Mitragotri S, Tran T N, Kaido H, Sundaram J, Choi I S, Hoffer S, Somorjai G A, Langer R. A reversibly switching surfaces. Science, 2003, 299(5605): 371–374
CrossRef Google scholar
[139]
Urban A M, Urban M W. Stimuli-responsive polymeric films and coatings. American Chemical Society, 2005, 912: 1
[140]
Ista L K, Mendez S, Lopez G P. Attachment and detachment of bacteria on surfaces with tunable and switchable wettability. Biofouling, 2010, 26(1): 111–118
CrossRef Google scholar
[141]
Ista L K, Perez-Luna V H, Lopez G P. Surface-grafted, environmentally sensitive polymers for biofilm release. Applied and Environmental Microbiology, 1999, 65(4): 1603–1609
[142]
Ista L K, Lopez G P. Lower critical solubility temperature materials as biofouling release agents. Journal of Industrial Microbiology & Biotechnology, 1998, 20: 121–125
CrossRef Google scholar
[143]
Ista L K, Mendez S, Perez-Luna V H, Lopez G P. Synthesis of poly(N-isopropylacrylamide) on initiator-modified self-assembled monolayers. Langmuir, 2001, 17(9): 2552–2555
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(920 KB)

Accesses

Citations

Detail

Sections
Recommended

/